Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Res ; 43(11): 5031-5040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37909987

ABSTRACT

BACKGROUND/AIM: Osimertinib is currently used as a first-line treatment for EGFR-mutated non-small cell lung cancer, and the emergence of drug resistance poses a substantial challenge. Liquid biopsy with a multi-gene panel can examine both the molecular mechanisms and possibility of early resistance diagnosis. PATIENTS AND METHODS: We used a molecular barcode library construction kit (Archer® LiquidPlex™) that allowed the analysis of multiple cancer-related genes using cell-free DNA from the plasma samples of patients. We collected plasma from 17 consecutive patients with lung adenocarcinoma at our hospital at various time points and cell-free DNA was extracted and subjected to LiquidPlex analysis. RESULTS: Plasma DNA concentration was not associated with the presence or absence of resistance to osimertinib. The pathological mutations detected using next-generation sequencing in the resistant specimens were in MAP2K1, PIK3CA, TP53, BRAF, and EGFR. Among the recurrent cases, EGFR mutations identified at the initial diagnosis were detected within 6 months before relapse confirmation in four cases (average 88 days). Many of the recurrent cases without detection of known EGFR mutations in the liquid biopsy showed a longer interval between the detection of relapse and the last blood draw for the liquid biopsy (average 255 days). CONCLUSION: Frequent liquid biopsies are useful for identifying known EGFR mutations as markers for early detection of relapse. Several cancer driver mutations were observed, suggesting a variety of mechanisms of resistance in first-line osimertinib-treated lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplasm Recurrence, Local , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Liquid Biopsy , Recurrence , ErbB Receptors/genetics
2.
Sci Rep ; 13(1): 13867, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620512

ABSTRACT

Tunas (genus Thunnus) are one of the most ecologically and commercially important fish worldwide. To establish a biological basis for reproduction in this globally essential species, we have recently studied crucial reproductive aspects of the Pacific bluefin tuna (T. orientalis; PBT), as a model of tuna species, based on our closed-cycle aquaculture technology. In this study, we clarified the global expression profile of the genes regulating gonadal sex differentiation in PBT, as this developmental process is vital to sexual reproduction. Based on the results of our comparative (RNA-sequencing) and temporal (qRT-PCR) transcriptome analyses using the updated genome dataset, we propose the molecular mechanisms of gonadal sex differentiation in PBT. In female gonads, foxl2 and cyp19a1a (coding aromatase) are expressed at the onset of sex differentiation. Active aromatase-mediated estrogen biosynthesis, which includes positive regulation of cyp19a1a expression by Foxl2, induces ovarian differentiation. By contrast, dmrt1 and gsdf are upregulated in differentiating male gonads lacking active estrogen synthesis. Dmrt1 and Gsdf would mainly promote testicular differentiation. Furthermore, androgen biosynthesis is upregulated in differentiating male gonad. Endogenous androgens may also be vital to testicular differentiation. This study provides the first comprehensive data clarifying the molecular basis for gonadal sex differentiation in tunas.


Subject(s)
Aromatase , Tuna , Female , Male , Animals , Tuna/genetics , Aromatase/genetics , Transcriptome , Sex Differentiation/genetics , Gonads , Estrogens
4.
Sci Rep ; 9(1): 13871, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554877

ABSTRACT

In bluefin tuna aquaculture, high mortalities of hatchery-reared juveniles occur in sea cages owing to wall collisions that are caused by high-speed swimming in panic due to changes in illuminance. Here, we report that targeted gene mutagenesis of the ryanodine receptor (RyR1b), which allows the sarcoplasmic reticulum to release Ca2+ in fast skeletal muscle, using highly active Platinum TALENs caused slow swimming behaviour in response to external stimuli in Pacific bluefin tuna (PBT) larvae. This characteristic would be a useful trait to prevent wall collisions in aquaculture production. A pair of Platinum TALENs targeting exons 2 and 43 of the PBT ryr1b gene induced deletions in each TALEN target site of the injected embryos with extremely high efficiency. In addition, ryr1b expression was significantly decreased in the mutated G0 larvae at 7 days after hatching (DAH). A touch-evoked escape behaviour assay revealed that the ryr1b-mutated PBT larvae swam away much less efficiently in response to mechanosensory stimulation at 7 DAH than did the wild-type larvae. Our results demonstrate that genome editing technologies are effective tools for determining the functional characterization of genes in a comparatively short period, and create avenues for facilitating genetic studies and breeding of bluefin tuna species.


Subject(s)
Ryanodine Receptor Calcium Release Channel/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Tuna/physiology , Animals , Aquaculture/methods , Female , Gene Expression Regulation , Larva , Male , Mutagenesis, Site-Directed , Platinum , Ryanodine Receptor Calcium Release Channel/physiology , Swimming/physiology , Tuna/genetics
5.
Nat Commun ; 9(1): 3402, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143642

ABSTRACT

Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation.


Subject(s)
Chitin/immunology , Gastrointestinal Microbiome/physiology , Mucus/microbiology , Animals , Chordata/immunology , Chordata/microbiology , Ciona/immunology , Ciona/microbiology , Fishes/immunology , Fishes/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Nanofibers
6.
Front Physiol ; 9: 212, 2018.
Article in English | MEDLINE | ID: mdl-29593569

ABSTRACT

The mRNA expressions of the epithelial neutral amino acid transporters slc6a18 and slc6a19a in the five segments (HL, PMC, GL, DMC, and TS) of the intestine of Mozambique tilapia, and their responses to fasting and refeeding were investigated for a better understanding of the functional and nutritional characteristics of slc6a18 and slc6a19a. Although both slc6a18 and slc6a19a were expressed mainly in the intestine, these genes showed opposing spatial distributions along the intestine. The slc6a18 was mainly expressed in the middle (GL) and posterior (DMC and TS) intestines, while slc6a19a was specifically expressed in the anterior intestine (HL and PMC). Large decreases of amino acid concentrations from the HL to GL imply that amino acids are mainly absorbed before reaching the GL, suggesting an important role of slc6a19a in the absorption. Moreover, substantial amounts of some neutral amino acids with the isoelectric point close to 6 remain in the GL. These are most likely the remaining unabsorbed amino acids or those from of amino acid antiporters which release neutral amino acids in exchange for uptake of its substrates. These amino acids were diminished in the TS, suggesting active absorption in the posterior intestine. This suggests that slc6a18 is essential to complete the absorption of neutral amino acids. At fasting, significant downregulation of slc6a19a expression was observed from the initial up to day 2 and became stable from day 4 to day 14 in the HL and PMC suggesting that slc6a19a expression reflects nutritional condition in the intestinal lumen. Refeeding stimulates slc6a19a expression, although expressions did not exceed the initial level within 3 days after refeeding. The slc6a18 expression was decreased during fasting in the GL but no significant change was observed in the DMC. Only a transient decrease was observed at day 2 in the TS. Refeeding did not stimulate slc6a18 expression. Results in this study suggest that Slc6a18 and Slc6a19 have different roles in the intestine, and that both of these contribute to establish the efficient neutral amino acid absorption system in the tilapia.

7.
Article in English | MEDLINE | ID: mdl-27693627

ABSTRACT

The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish.


Subject(s)
Eating , Fasting/metabolism , Fish Proteins/genetics , Gene Expression Regulation , Intestinal Mucosa/metabolism , Symporters/genetics , Tilapia/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Fish Proteins/chemistry , Fish Proteins/metabolism , Peptide Transporter 1 , Protein Transport , Symporters/chemistry , Symporters/metabolism , Tilapia/metabolism , Tilapia/physiology
8.
Gen Comp Endocrinol ; 206: 146-54, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25088575

ABSTRACT

Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.


Subject(s)
Gene Expression Regulation/drug effects , Intestinal Mucosa/metabolism , Ion Transport/physiology , Prolactin/pharmacology , Receptors, Prolactin/genetics , Salinity , Tilapia/metabolism , Acclimatization/physiology , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fresh Water , Intestines/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Prolactin/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seawater , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 1/metabolism , Tilapia/growth & development , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Water-Electrolyte Balance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...