Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Pediatr Blood Cancer ; 66(10): e27783, 2019 10.
Article in English | MEDLINE | ID: mdl-31304677

ABSTRACT

Natural killer (NK) cells have potential utility in pediatric cancer immunotherapy for their ability to lyse diverse tumor targets, lack of dependence on mutation-associated tumor antigens, and for their relative safety demonstrated so far in clinical trials. Here, we evaluate the cytotoxic potential of expanded NK cells against a well-characterized panel of pediatric cancer cell lines representing Ewing sarcoma, rhabdomyosarcoma, neuroblastoma, lymphoma, leukemia, and brain tumors. We correlate their sensitivity NK cell lysis with tumor phenotypic, transcriptomic, and genetic determinants, and correlate known immunogenetic determinants with donor NK cell potency. Although ligand expression on cell lines stratified according to hematologic versus nonhematologic cancer types, the sensitivity to NK cell lysis varied widely and did not correlate with cancer type, expression of individual activating or inhibitory ligands, gene-expression clusters of NK cell ligands, disease status (newly diagnosed or relapsed), or MYCN amplification. Rather, sensitivity to NK cell-mediated lysis was associated with a novel 96-gene cluster of predominantly carcinoma-, apoptosis-, and cell death-related pathways, and with functional p53 status. NK cell potency was strongly associated with activating KIR gene content, but not with KIR/KIR-ligand mismatch. This study suggests that adoptive immunotherapy with expanded NK cells has the potential for a wide range of pediatric cancers, identifies potential biomarkers of efficacy and response, and establishes a foundation for using this cell line panel for the preclinical evaluation of immunotherapies.


Subject(s)
Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , Transcriptome , Apoptosis/immunology , Carcinoma/immunology , Carcinoma/pathology , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Neoplasms/pathology
3.
J Neurooncol ; 142(3): 395-407, 2019 May.
Article in English | MEDLINE | ID: mdl-30788681

ABSTRACT

PURPOSE: Medulloblastoma (MB) is the most common malignant brain tumor in children. Recent studies have shown the ability of natural killer (NK) cells to lyse MB cell lines in vitro, but in vivo successes remain elusive and the efficacy and fate of NK cells in vivo remain unknown. METHODS: To address these questions, we injected MB cells into the cerebellum of immunodeficient mice and examined tumor growth at various days after tumor establishment via bioluminescence imaging. NK cells were labeled with a fluorine-19 (19F) MRI probe and subsequently injected either intratumorally or contralaterally to the tumor in the cerebellum and effect on tumor growth was monitored. RESULTS: The 19F probe efficiently labeled the NK cells and exhibited little cytotoxicity. Fluorine-19 MRI confirmed the successful and accurate delivery of the labeled NK cells to the cerebellum of the mice. Administration of 19F-labeled NK cells suppressed MB growth, with the same efficacy as unlabeled cells. Immunohistochemistry confirmed the presence of NK cells within the tumor, which was associated with induction of apoptosis in tumor cells. NK cell migration to the tumor from a distal location as well as activation of apoptosis was also demonstrated by immunohstochemistry. CONCLUSIONS: Our results show that NK cells present a novel opportunity for new strategies in MB treatment. Further, 19F-labeled NK cells can suppress MB growth while enabling 19F MRI to provide imaging feedback that can facilitate study and optimization of therapeutic paradigms.


Subject(s)
Cerebellar Neoplasms/prevention & control , Drug Monitoring/methods , Fluorine Radioisotopes/therapeutic use , Killer Cells, Natural/transplantation , Magnetic Resonance Imaging/methods , Medulloblastoma/prevention & control , Animals , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/pathology , Humans , Medulloblastoma/immunology , Medulloblastoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Front Immunol ; 7: 521, 2016.
Article in English | MEDLINE | ID: mdl-27933061

ABSTRACT

Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46), the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and granulocyte-macrophage colony-stimulating factor as measured by Luminex. Similar to human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median = 20,283-fold in 21 days). Furthermore, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46-) with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

5.
Oncoimmunology ; 5(4): e1100790, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27141382

ABSTRACT

It is increasingly recognized that trastuzumab, an antibody approved for treating human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer, exerts some of its antitumor effects through enhanced T cell responses. Full activation of CD8+ T cells requires both expression of major histocompatibility complex class I molecules (HLA-ABC) and expression of the T cell costimulatory molecule CD80 or CD86; however, the impact of trastuzumab treatment on the expression of HLA-ABC and CD80 and CD86 has not been investigated in HER2-overexpressing breast cancer cells. In this study, we found that, while there is no direct correlation between the expression of HER2 and HLA-ABC in breast cancer, knockdown of HER2 or inhibition of HER2 kinase by lapatinib downregulated HLA-ABC expression. Trastuzumab had no meaningful effects on HLA-ABC expression in HER2-overexpressing breast cancer cells in monoculture; however, treatment of such cells with trastuzumab in co-culture with human peripheral blood mononuclear cells (PBMC) significantly upregulated not only HLA-ABC expression but also CD86 expression. We showed that this upregulation was mediated by interferon gamma (IFNγ) secreted from the natural killer (NK) cells in PBMC as a result of engagement of NK cells by trastuzumab. We further confirmed this effect of trastuzumab in vivo using a mouse mammary tumor model transduced to overexpress human HER2. Together, our data provide evidence that trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules in HER2-overexpressing breast cancer cells in the presence of PBMC, which supports the view that T-cell-mediated immune responses are involved in trastuzumab-mediated antitumor effects.

6.
Methods Mol Biol ; 1441: 107-16, 2016.
Article in English | MEDLINE | ID: mdl-27177660

ABSTRACT

Although natural killer (NK) cells produce various cytokines that regulate other lymphocytes of the immune system, the primary effector function of NK cells is the direct cytolysis of their targets. Hence analyzing the cytotoxic potential of these lymphocytes is fundamental to understanding their biology and their clinical impact. We have previously shown that release-based cytotoxicity assays, such as calcein release assay, could potentially underestimate percent specific lysis if the entrapped reporter is not completely released and demonstrated that an Image cytometry method can overcome this caveat. In this chapter, we describe a detailed methodology to quantitate NK cell cytotoxicity using the Cellometer Vision Image Cytometry system.


Subject(s)
Image Cytometry/methods , Killer Cells, Natural/cytology , Cell Survival , Cells, Cultured , Cytotoxicity, Immunologic , Humans , K562 Cells
7.
Methods Mol Biol ; 1441: 175-93, 2016.
Article in English | MEDLINE | ID: mdl-27177666

ABSTRACT

Natural killer (NK) cells have gained significant attention for adoptive immunotherapy of cancer due to their well-documented antitumor function. In order to evaluate the therapeutic efficacy of NK cell adoptive immunotherapy in preclinical models with a potential for clinical translation, there is a need for a reliable platform for ex vivo expansion of NK cells. Numerous methods are reported in literature using cytokines and feeder cells to activate and expand human NK cells, and many of these methods are limited by low-fold expansion, cytokine dependency of expanded NK cells or expansion-related senescence. In this chapter, a robust NK cell expansion protocol is described using K562 cell line gene modified to express membrane bound IL21 (K562 mb.IL21). We had previously demonstrated that this platform enables the highest fold expansion of NK cells reported in the literature to date (>47,000-folds in 21 days), and produces highly activated and pure NK cells without signs of senescence, as determined by telomere shortening.


Subject(s)
Feeder Cells/cytology , Interleukins/metabolism , Killer Cells, Natural/cytology , Cell Membrane/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Feeder Cells/immunology , Genetic Engineering , Humans , Interleukins/genetics , K562 Cells , Killer Cells, Natural/immunology , Lymphocyte Activation
8.
Methods Mol Biol ; 1441: 253-65, 2016.
Article in English | MEDLINE | ID: mdl-27177672

ABSTRACT

Trogocytosis is a rapid contact-dependent process by which lymphocytes acquire membrane patches from the target cells ('donor' cells) with which they interact and this phenomenon has been shown to occur in various immune cells. The surface molecules acquired through trogocytosis are functionally incorporated in the 'acceptor' cells transiently. We had previously demonstrated that trogocytosis can be utilized in place of gene transfer to engineer surface receptor expression on NK cells for adoptive immunotherapy applications. In this chapter, we describe detailed protocol for trogocytosis-co-culture of NK cell with the donor cell line, phenotypic assessment of receptor uptake and persistence, and assessment of NK cell function (migration) following receptor acquisition.


Subject(s)
Killer Cells, Natural/cytology , Receptors, Antigen/genetics , Receptors, Antigen/metabolism , Cell Movement , Cells, Cultured , Coculture Techniques , Cytotoxicity, Immunologic , Humans , Immunotherapy, Adoptive , K562 Cells , Killer Cells, Natural/immunology
9.
Methods Mol Biol ; 1441: 267-76, 2016.
Article in English | MEDLINE | ID: mdl-27177673

ABSTRACT

Gene silencing through siRNA is an effective experimental tool to unravel molecular mechanisms involved in cellular processes. Here we describe a method to silence gene expression in primary human natural killer (NK) cells by transfecting ON-TARGETplus SMART pool siRNA using an electroporation-based method called Nucleofection(®). The technique yields effective silencing of the target gene without any off-target effects.


Subject(s)
Electroporation/methods , Killer Cells, Natural/cytology , RNA, Small Interfering/genetics , Cell Survival , Cells, Cultured , Gene Expression , Gene Silencing , Humans , Killer Cells, Natural/metabolism
10.
Methods Mol Biol ; 1441: 307-16, 2016.
Article in English | MEDLINE | ID: mdl-27177677

ABSTRACT

Preclinical animal models play a vital role in developing novel adoptive immunotherapies for cancer. In these in vivo models, it is essential to track the adoptively transferred cells to understand their tissue localization (biodistribution) in order to correlate with observed therapeutic outcomes as well as to develop novel approaches to promote homing to tumors or organs of interest. This chapter describes a simple and quick method for fluorescence labeling and in vivo imaging of adoptively transferred NK cells in small animal models.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Optical Imaging/methods , Animals , Cell Line, Tumor , Cell Movement , Disease Models, Animal , Humans , K562 Cells , Killer Cells, Natural/immunology , Mice , Organ Specificity , Tissue Distribution
11.
Methods Mol Biol ; 1441: 317-32, 2016.
Article in English | MEDLINE | ID: mdl-27177678

ABSTRACT

In order to assess the biodistribution, homing, and persistence of adoptively transferred natural killer (NK) cell immunotherapies, there is a need for imaging methodology suitable for use in preclinical studies with relevance to clinical translation. Amongst the available approaches, (19)F-MRI is very appealing for in vivo imaging due to the absence of background signal, enabling clear detection of (19)F labeled cells in vivo. Here we describe a methodology for in vivo imaging of adoptively transferred NK cells labeled with (19)F nano-emulsion, using clinically translatable technology of (19)F/(1)H magnetic resonance imaging.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Fluorine-19 Magnetic Resonance Imaging/methods , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Animals , Cell Count , Cell Line, Tumor , Cells, Cultured , Humans , K562 Cells , Killer Cells, Natural/cytology , Mice , Tissue Distribution , Xenograft Model Antitumor Assays
12.
Cytotherapy ; 18(5): 653-63, 2016 May.
Article in English | MEDLINE | ID: mdl-27059202

ABSTRACT

BACKGROUND AIMS: Natural killer (NK) cell immunotherapy for treatment of cancer is promising, but requires methods that expand cytotoxic NK cells that persist in circulation and home to disease site. METHODS: We developed a particle-based method that is simple, effective and specifically expands cytotoxic NK cells from peripheral blood mononuclear cells (PBMCs) both ex vivo and in vivo. This method uses particles prepared from plasma membranes of K562-mb21-41BBL cells, expressing 41BBL and membrane bound interleukin-21 (PM21 particles). RESULTS: Ex vivo, PM21 particles caused specific NK-cell expansion from PBMCs from healthy donors (mean 825-fold, range 163-2216, n = 13 in 14 days) and acute myeloid leukemia patients. The PM21 particles also stimulated in vivo NK cell expansion in NSG mice. Ex vivo pre-activation of PBMCs with PM21 particles (PM21-PBMC) before intraperitoneal (i.p.) injection resulted in 66-fold higher amounts of hNK cells in peripheral blood (PB) of mice compared with unactivated PBMCs on day 12 after injection. In vivo administration of PM21 particles resulted in a dose-dependent increase of PB hNK cells in mice injected i.p. with 2.0 × 10(6) PM21-PBMCs (11% NK cells). Optimal dose of 800 µg/injection of PM21 particles (twice weekly) with low-dose interleukin 2 (1000 U/thrice weekly) resulted in 470 ± 40 hNK/µL and 95 ± 2% of total hCD45(+) cells by day 12 in PB. Furthermore, hNK cells were found in marrow, spleen, lung, liver and brain (day 16 after i.p. PM21/PBMC injection), and mice injected with PM21 particles had higher amounts. CONCLUSIONS: The extent of NK cells observed in PB, their persistence and the biodistribution would be relevant for cancer treatment.


Subject(s)
Cell Proliferation/drug effects , Interleukin-2/pharmacology , Interleukins/pharmacology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/therapy , Lymphocyte Activation/immunology , Animals , Cell Line, Tumor , Cell Membrane , Female , Humans , Immunotherapy/methods , K562 Cells , Killer Cells, Natural/cytology , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred NOD , Mice, SCID
13.
PLoS One ; 10(10): e0141074, 2015.
Article in English | MEDLINE | ID: mdl-26492577

ABSTRACT

Natural killer (NK) cells belong to the innate arm of the immune system and though activated NK cells can modulate immune responses through the secretion of cytokines, their primary effector function is through target cell lysis. Accordingly, cytotoxicity assays are central to studying NK cell function. The 51Chromium release assay, is the "gold standard" for cytotoxicity assay, however, due to concerns over toxicity associated with the use and disposal of radioactive compounds there is a significant interest in non-radioactive methods. We have previously used the calcein release assay as a non-radioactive alternative for studying NK cell cytotoxicity. In this study, we show that the calcein release assay varies in its dynamic range for different tumor targets, and that the entrapped calcein could remain unreleased within apoptotic bodies of lysed tumor targets or incompletely released resulting in underestimation of percent specific lysis. To overcome these limitations, we developed a novel cytotoxicity assay using the Cellometer Vision Image Cytometer and compared this method to standard calcein release assay for measuring NK cell cytotoxicity. Using tumor lines K562, 721.221, and Jurkat, we demonstrate here that image cytometry shows significantly higher percent specific lysis of the target cells compared to the standard calcein release assay within the same experimental setup. Image cytometry is able to accurately analyze live target cells by excluding dimmer cells and smaller apoptotic bodies from viable target cell counts. The image cytometry-based cytotoxicity assay is a simple, direct and sensitive method and is an appealing option for routine cytotoxicity assay.


Subject(s)
Apoptosis , Cytotoxicity Tests, Immunologic/methods , Flow Cytometry/methods , Image Cytometry/methods , Killer Cells, Natural/pathology , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Humans , Tumor Cells, Cultured
14.
Blood ; 124(3): 403-11, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24891320

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is considered a negative regulator of inflammation, as inhibition of STAT3 signaling enhances antitumor immunity. However, STAT3 activation is a key oncogenic pathway in natural killer (NK)-lineage large granular lymphomas, and we recently reported enhanced proliferation and function of human NK cells activated with IL-21, which signals primarily through STAT3. These IL-21-expanded NK cells also have increased NKG2D expression, which led us to focus our investigation on whether STAT3 regulates NKG2D. In this study, we show that modulation of STAT3 phosphorylation with cytokines and small-molecule inhibitors correlates with NKG2D expression on human NK cells, leading to altered NK-cell degranulation. Moreover, NKG2D expression on murine NK cells having conditional STAT3 ablation is lower than on NK cells from wild-type mice, and human NK cells carrying dominant-negative STAT3 mutations have decreased baseline NKG2D expression and blunted responses to IL-10 and IL-21. Lastly, we show binding of STAT3 to a predicted STAT3 binding site upstream of the NKG2D gene, which is enhanced by IL-10 and IL-21 and decreased by STAT3 inhibition. Taken together, these data show that NKG2D expression in NK cells is regulated at the transcriptional level by STAT3, resulting in a functional NK cell defect in patients with STAT3 mutations.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , STAT3 Transcription Factor/metabolism , Animals , Base Sequence , Binding Sites/genetics , DNA/genetics , DNA/metabolism , Humans , Interleukin-10/metabolism , Interleukin-15/metabolism , Interleukins/metabolism , Job Syndrome/genetics , Job Syndrome/immunology , Job Syndrome/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Mutation , Phosphorylation , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/deficiency , STAT3 Transcription Factor/genetics , Signal Transduction , Transcription, Genetic , Tyrosine/metabolism
15.
Clin Cancer Res ; 19(8): 2132-43, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23378384

ABSTRACT

PURPOSE: Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). EXPERIMENTAL DESIGN: Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. RESULTS: Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. CONCLUSION: Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.


Subject(s)
Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/immunology , Neuroblastoma/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , CD56 Antigen/immunology , CD56 Antigen/metabolism , Cell Line, Tumor , Cells, Cultured , Child , Coculture Techniques , Cytokines/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic/immunology , Flow Cytometry , Humans , Immunotherapy, Adoptive/methods , K562 Cells , Kaplan-Meier Estimate , Killer Cells, Natural/metabolism , Killer Cells, Natural/transplantation , Mice , Mice, Inbred NOD , Mice, SCID , Neuroblastoma/therapy , Xenograft Model Antitumor Assays
16.
Mol Immunol ; 54(3-4): 296-301, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23328088

ABSTRACT

DNA hypermethylation resulting in aberrant epigenetic silencing plays an important role in the oncogenesis of many cancer types, including acute myelogenous leukemia (AML).(4) The modulation of NK cell receptors and their cognate ligands is a known mechanism of immune escape in AML, and some membrane proteins, such as killer immunoglobulin-like receptors (KIR), are known to be transcriptionally regulated by DNA methylation of their promoter regions. Thus, restoring proper expression of immunoreceptors or their ligands with immunosensitizing drugs is an attractive approach to improving cancer immunotherapy. The cytidine analog 5-aza-2'-deoxycytidine (decitabine, DAC) has both a hypomethylating effect at low doses when incorporated into DNA and a cytotoxic effect at higher doses as a result of interfering with translation when incorporated into RNA. Thus, decitabine has been used at higher doses for its direct anti-leukemic effect, and is being tested at low doses for its ability to correct the malignant gene expression phenotype. A known benefit of hypomethylating agents is their ability to sensitize AML blasts to lysis by NK cells. However, there is little information on the direct effect of hypomethylating agents on NK cell phenotype, proliferation, survival, or function. We recently described a method for inducing robust proliferation of NK cells, enabling us to study the hypomethylating effects of decitabine. To distinguish direct toxicity of the decitabine from its hypomethylating effect, and promote hypomethylation during proliferation, decitabine was added to human peripheral blood NK cells at concentrations from 0.02 to 5µM under either static or proliferation-inducing culture conditions. After 5 days, NK cells were assessed for viability, proliferation, cytotoxicity, expression of major activating and inhibitory receptors, and global DNA methylation. Increasing concentrations of decitabine not only causes increased expression of KIR and the activating receptor NKp44, but also causes decreased viability, proliferation, and expression of the activating receptor NKG2D. Decitabine treatment results in a biphasic effect in overall NK cell lytic function, which correlates with a biphasic pattern of global hypomethylation. Decitabine affects the expression of activating and inhibitory receptors in NK cells at low concentrations when exposed during cell proliferation. High doses of decitabine decrease NK cell proliferation and viability, likely through direct inhibition of mRNA transcription. The results of these combined effects leads to a biphasic response in hypomethylation and cytotoxicity. This suggests that optimal immunomodulation with decitabine occurs at low dose ranges and that high doses abrogate this effect through inhibition of proliferation and direct toxicity to NK cells.


Subject(s)
Azacitidine/analogs & derivatives , Killer Cells, Natural/drug effects , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , Cell Growth Processes/drug effects , Cell Growth Processes/genetics , Cell Growth Processes/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/immunology , Cytotoxicity, Immunologic/drug effects , DNA Methylation/drug effects , Decitabine , Humans , K562 Cells , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Natural Cytotoxicity Triggering Receptor 2/genetics , Natural Cytotoxicity Triggering Receptor 2/immunology , Natural Cytotoxicity Triggering Receptor 2/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, KIR/genetics , Receptors, KIR/immunology , Receptors, KIR/metabolism , Receptors, Natural Killer Cell/genetics , Receptors, Natural Killer Cell/immunology , Receptors, Natural Killer Cell/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Transcription, Genetic/immunology
17.
J Mol Med (Berl) ; 91(4): 459-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23052481

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor in children. Combining passive immunotherapy with an antibody to the disialoganglioside GD2 (ch14.18/SP2/0) and cytokines with 13-cis-retinoic acid for post-myeloablative maintenance therapy increased survival in high-risk NB, but the overall prognosis for these children is still in need of improvement. Fenretinide (4-HPR) is a synthetic retinoid that has shown clinical activity in recurrent NB and is cytotoxic to a variety of cancer cells, in part via the accumulation of dihydroceramides, which are precursors of GD2. We investigated the effect of 4-HPR on CHO-derived, ch14.18-mediated anti-NB effector functions, complement-dependent cytotoxicity (CDC), and antibody-dependent and antibody-independent cellular cytotoxicity (ADCC and AICC, respectively). Here, we demonstrate for the first time that pretreatment of fenretinide-resistant NB cells with 4-HPR significantly enhanced ch14.18/CHO-mediated CDC and ADCC and AICC by both human natural killer cells and peripheral blood mononuclear cells. Treatment with 4-HPR increased GD2 and death receptor (DR) expression in resistant NB cells and induced an enhanced granzyme B and perforin production by effector cells. Blocking of ganglioside synthesis with a glucosylceramide synthase inhibitor abrogated the increased ADCC response but had no effect on the AICC, indicating that GD2 induced by 4-HPR mediates the sensitization of NB cells for ADCC. We also showed that 4-HPR induced increased GD2 and DR expression in a resistant NB xenograft model that was associated with an increased ADCC and AICC response using explanted tumor target cells from 4-HPR-treated mice. In summary, these findings provide an important baseline for the combination of 4-HPR and passive immunotherapy with ch14.18/CHO in future clinical trials for high-risk NB patients.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Fenretinide/pharmacology , Killer Cells, Natural/immunology , Neuroblastoma/immunology , Animals , Cell Line, Tumor , Coculture Techniques , Complement System Proteins/immunology , Female , Gangliosides/metabolism , Humans , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Receptors, Death Domain/metabolism , Xenograft Model Antitumor Assays
18.
Blood ; 119(22): 5164-72, 2012 May 31.
Article in English | MEDLINE | ID: mdl-22498742

ABSTRACT

Natural killer (NK) cells have gained significant attention in adoptive immunotherapy for cancer. Consequently, novel methods of clinical-grade expansion of NK cells have emerged. Subsets of NK cells express a variety of chemokine receptors. However, to expand the scope of adoptively transferred NK cell homing to various malignancies, expression of corresponding chemokine receptors on NK cells is essential. Here, we have explored the use of trogocytosis as a tool to transiently express the chemokine receptor CCR7 on expanded human NK cells with the aim to enhance their homing to lymph nodes. We generated a K562-based "donor" cell line expressing CCR7, Clone9.CCR7, to transfer CCR7 onto NK cells via trogocytosis. CCR7 expression occurred in 80% of expanded NK cells within 1 hour after coculture with Clone9.CCR7. After removal of the donor cells from the coculture, the CCR7 expression on NK cells steadily declined to baseline levels by 72 hours. The acquired CCR7 receptors mediated in vitro migration of NK cells toward CCL19 and CCL21 and increased the lymph node homing by 144% in athymic nude mice. This is the first report on exploiting trogocytosis to rapidly and transiently modify lymphocytes, without direct genetic intervention, for adoptive transfer.


Subject(s)
Cell Engineering , Cell Movement , Gene Expression , Killer Cells, Natural/immunology , Lymph Nodes/immunology , Receptors, CCR7/immunology , Adoptive Transfer , Animals , Coculture Techniques , Female , Humans , K562 Cells , Killer Cells, Natural/cytology , Killer Cells, Natural/transplantation , Lymph Nodes/cytology , Male , Mice , Mice, Nude , Receptors, CCR7/genetics , Transduction, Genetic , Transplantation, Heterologous
19.
PLoS One ; 7(1): e30264, 2012.
Article in English | MEDLINE | ID: mdl-22279576

ABSTRACT

NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.


Subject(s)
Cell Proliferation , Interleukins/immunology , Killer Cells, Natural/immunology , Membrane Proteins/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Artificial Cells/immunology , Artificial Cells/metabolism , Cell Line , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Flow Cytometry , Gene Expression Profiling , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Interleukin-15/immunology , Interleukin-15/metabolism , Interleukins/metabolism , K562 Cells , Killer Cells, Natural/metabolism , Membrane Proteins/metabolism , Receptors, KIR/immunology , Receptors, KIR/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Telomere/genetics , U937 Cells
20.
J Vis Exp ; (48)2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21339714

ABSTRACT

Natural killer (NK) cells play an important role in immune surveillance against a variety of infectious microorganisms and tumors. Limited availability of NK cells and ability to expand in vitro has restricted development of NK cell immunotherapy. Here we describe a method to efficiently expand vast quantities of functional NK cells ex vivo using K562 cells expressing membrane-bound IL21, as an artificial antigen-presenting cell (aAPC). NK cell adoptive therapies to date have utilized a cell product obtained by steady-state leukapheresis of the donor followed by depletion of T cells or positive selection of NK cells. The product is usually activated in IL-2 overnight and then administered the following day. Because of the low frequency of NK cells in peripheral blood, relatively small numbers of NK cells have been delivered in clinical trials. The inability to propagate NK cells in vitro has been the limiting factor for generating sufficient cell numbers for optimal clinical outcome. Some expansion of NK cells (5-10 fold over 1-2 weeks) has be achieved through high-dose IL-2 alone. Activation of autologous T cells can mediate NK cell expansion, presumably also through release of local cytokine. Support with mesenchymal stroma or artificial antigen presenting cells (aAPCs) can support the expansion of NK cells from both peripheral blood and cord blood. Combined NKp46 and CD2 activation by antibody-coated beads is currently marketed for NK cell expansion (Miltenyi Biotec, Auburn CA), resulting in approximately 100-fold expansion in 21 days. Clinical trials using aAPC-expanded or -activated NK cells are underway, one using leukemic cell line CTV-1 to prime and activate NK cells without significant expansion. A second trial utilizes EBV-LCL for NK cell expansion, achieving a mean 490-fold expansion in 21 days. The third utilizes a K562-based aAPC transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mIL-15), which achieved a mean NK expansion 277-fold in 21 days. Although, the NK cells expanded using K562-41BBL-mIL15 aAPC are highly cytotoxic in vitro and in vivo compared to unexpanded NK cells, and participate in ADCC, their proliferation is limited by senescence attributed to telomere shortening. More recently a 350-fold expansion of NK cells was reported using K562 expressing MICA, 4-1BBL and IL15. Our method of NK cell expansion described herein produces rapid proliferation of NK cells without senescence achieving a median 21,000-fold expansion in 21 days.


Subject(s)
Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Antigen Presentation , Humans , Immunotherapy, Adoptive , K562 Cells , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...