Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biol Ther ; 16(11): 1593-603, 2015.
Article in English | MEDLINE | ID: mdl-26391970

ABSTRACT

Chewing tobacco is a common practice in certain socio-economic sections of southern Asia, particularly in the Indian subcontinent and has been well associated with head and neck squamous cell carcinoma. The molecular mechanisms of chewing tobacco which leads to malignancy remains unclear. In large majority of studies, short-term exposure to tobacco has been evaluated. From a biological perspective, however, long-term (chronic) exposure to tobacco mimics the pathogenesis of oral cancer more closely. We developed a cell line model to investigate the chronic effects of chewing tobacco. Chronic exposure to tobacco resulted in higher cellular proliferation and invasive ability of the normal oral keratinocytes (OKF6/TERT1). We carried out quantitative proteomic analysis of OKF6/TERT1 cells chronically treated with chewing tobacco compared to the untreated cells. We identified a total of 3,636 proteins among which expression of 408 proteins were found to be significantly altered. Among the overexpressed proteins, stearoyl-CoA desaturase (SCD) was found to be 2.6-fold overexpressed in the tobacco treated cells. Silencing/inhibition of SCD using its specific siRNA or inhibitor led to a decrease in cellular proliferation, invasion and colony forming ability of not only the tobacco treated cells but also in a panel of head and neck cancer cell lines. These findings suggest that chronic exposure to chewing tobacco induced carcinogenesis in non-malignant oral epithelial cells and SCD plays an essential role in this process. The current study provides evidence that SCD can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients who are users of tobacco.


Subject(s)
Keratinocytes/enzymology , Stearoyl-CoA Desaturase/metabolism , Tobacco Use/metabolism , Carcinogenesis/metabolism , Cell Line , Cell Movement , Cell Proliferation , Enzyme Induction , Humans , Mouth Mucosa/pathology , Mouth Neoplasms/etiology , Mouth Neoplasms/pathology , Proteome/metabolism , Stearoyl-CoA Desaturase/genetics , Nicotiana/adverse effects , Tobacco Use/adverse effects , Tobacco Use/pathology
2.
J Proteomics ; 108: 306-15, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24769236

ABSTRACT

Dicer is a crucial RNase III enzyme in miRNA biogenesis pathway. Although numerous studies have been carried out to investigate the role of miRNAs and Dicer in the regulation of biological processes, few studies have examined proteomic alterations upon knockout of Dicer. We employed a Cre-loxP-based inducible knockout mouse system to investigate the proteome regulated by Dicer-dependent miRNAs. We utilized spiked liver lysates from metabolically labeled mice to quantify the subtle changes in the liver proteome upon deletion of Dicer. We identified 2137 proteins using high resolution tandem mass spectrometry analysis. The upregulated proteins included several enzymes involved in peroxisomal ß-oxidation of fatty acids and a large majority of the upregulated proteins involved in lipid metabolism were known PPARα targets. MRM-based assays were carried out to confirm the upregulation of enzymes including peroxisomal bifunctional enzyme, phosphoenolpyruvate carboxykinase 1, cytochrome P450 3A13, cytochrome P450 3A41 and myristoylated alanine-rich protein kinase C substrate. Further, miRNA-124 which is predicted to regulate expression of peroxisomal bifunctional enzyme was confirmed to be downregulated in the Dicer knockout mice. Our study demonstrates the strength of coupling knockout mouse models and quantitative proteomic strategies to investigate functions of individual proteins in vivo. BIOLOGICAL SIGNIFICANCE: Dicer dependent miRNA biogenesis is the major pathway for generation of mature miRNAs. We developed SILAC mouse-based proteomics screen to identify protein targets of Dicer-dependent miRNAs in liver of Dicer knockout mice. We spiked liver lysates of induced and uninduced Dicer knockout mice with liver lysate of SILAC labeled mice for identification of dysregulated proteome. We quantitated 1217 proteins of which 257 were upregulated in induced Dicer knockout mice. We observed enrichment of PPAR-α targets and proteins involved in lipid metabolism among upregulated proteins. We further carried out MRM-based validation of peroxisomal bifunctional enzyme, phosphoenolpyruvate carboxykinase 1, Cyp3A13, Cyp3A41 and myristoylated alanine-rich protein kinase C substrate. We further validated upregulation of peroxisomal bifunctional enzyme using Western blot analysis and downregulation of its predicted upstream miRNA, miR-124 using qRT-PCR. Our study demonstrates that upon ablation of Dicer, certain Dicer-dependent miRNAs are dysregulated which result in dysregulation of their target proteins such as proteins associated with lipid metabolism. Our study illustrates the use of SILAC strategy for quantitative proteomic investigations of animal model systems.


Subject(s)
DEAD-box RNA Helicases/metabolism , Lipid Metabolism/physiology , Liver/metabolism , PPAR alpha/metabolism , Proteome/metabolism , Proteomics , Ribonuclease III/metabolism , Animals , DEAD-box RNA Helicases/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , PPAR alpha/genetics , Peroxisomes/genetics , Peroxisomes/metabolism , Proteome/genetics , Ribonuclease III/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...