Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Environ Sci ; 18(3): 198-206, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16131024

ABSTRACT

OBJECTIVE: To investigate the alterations in auditory brainstem evoked responses (ABRs) and the changes of carboplatin-induced ototoxicity in the cochlear oxidant/antioxidant systems and otoprotection by an antioxidant lipoate. METHODS: Male wistar rats were divided into four groups and treated as follows: 1) vehicle (saline) control, 2) carboplatin (256 mg/kg, i.p.), 3) lipoate (100 mg/kg, i.p.), 4) lipoate + carboplatin. Post-treatment ABRs were performed after four days and rats were sacrificed with their cochleae harvested and analyzed. RESULTS: Carboplatin significantly elevated ABR threshold above the pretreatment thresholds. Lipoate+carboplatin treated rats showed decreased elevation of hearing threshold. Carboplatin significantly depleted cochlear reduced to oxizized glutathione (GSH/GSSG) ratio, whereas lipoate+carboplatin treatment increased GSH/GSSG ratio. Carboplatin significantly decreased cochlear copper zinc-superoxide dismutase (CuZn-SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST) activities and enzyme protein expressions and a significant increase in Mn-SOD activity, protein expression and malondialdehyde (MDA) level. Cochlear antioxidant enzyme activities, enzyme protein expressions and MDA level were partially restored in lipoate+carboplatin treated rats, compared to carboplatin alone. CONCLUSION: Carboplatin-induced ototoxicity is related to impairment of cochlear antioxidant system and otoprotection conferred by lipoate is associated with partial sparing of the cochlear antioxidant defense system.


Subject(s)
Antioxidants/pharmacology , Cochlea/drug effects , Hearing Loss, Sensorineural/chemically induced , Protective Agents/pharmacology , Thioctic Acid/pharmacology , Animals , Auditory Threshold/drug effects , Carboplatin , Catalase/metabolism , Cochlea/enzymology , Cochlea/metabolism , Evoked Potentials, Auditory, Brain Stem/drug effects , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Male , Malondialdehyde/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
2.
Mol Cell Biochem ; 270(1-2): 209-14, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15792369

ABSTRACT

This study investigated the interactive effects of acute exercise and adenosine receptor agonist and antagonist on antioxidant enzyme activities, glutathione and lipid peroxidation in the heart of the rat. Male Fisher-344 rats were divided into six groups and treated as follows: (1) saline control; (2) acute exercise (100% VO2max); (3) R-Phenyl isopropyl adenosine (R-PIA) (3.46 micromol/kg, i.p.); (4) theophylline (1.70 micromol/kg, i.p.) plus acute exercise; (5) theophylline plus R-PIA; and (6) theophylline. Animals were sacrificed 1 h after treatments; hearts were isolated and analyzed. The results show that acute exercise as well as adenosine receptor agonist R-PIA significantly enhanced cardiac superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione reductase (GR) activity by 36-135% and 16-51%, respectively. Adenosine receptor agonist R-PIA significantly decreased cardiac GSSG concentration and enhanced GSH/GSSG ratio by 22 and 30%, respectively. Whereas theophylline treatment blocked the activation of antioxidant enzyme activities enhanced by acute exercise and R-PIA. Theophylline treatment significantly increased lipid peroxidation by 43% in the heart of exercised rats. The study concluded that the adenosine receptors are involved in the upregulation of cardiac antioxidant defense system and attenuation of lipid peroxidation due to acute exercise in rats.


Subject(s)
Antioxidants/pharmacology , Myocardium/pathology , Physical Conditioning, Animal , Purinergic P1 Receptor Agonists , Animals , Antioxidants/metabolism , Catalase/metabolism , Disulfides/chemistry , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Lipid Peroxidation , Male , Myocardium/enzymology , Oxygen Consumption , Phenylisopropyladenosine/pharmacology , Rats , Rats, Inbred F344 , Superoxide Dismutase/metabolism , Theophylline/pharmacology
3.
Indian J Physiol Pharmacol ; 48(2): 150-64, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15521554

ABSTRACT

Pyridostigmine bromide, a reversible anticholinesterase drug, was used by military personnel during the Gulf War. They were under physical stress and might have been exposed to low-dose nerve gas, sarin. This study examined the interactions of low-dose sarin and pyridostigmine in exercised mice. Male NIH Swiss mice were treated as follows: 1) Control; 2) Sarin (0.01 mg/kg, sc); 3) exercise; 4) sarin plus exercise; 5) pyridostigmine; 6) pyridostigmine plus exercise; 7) pyridostigmine plus sarin; 8) pyridostigmine plus sarin plus exercise. Exercise was given daily for 10 weeks on treadmill and pyridostigmine and sarin were administered daily during the 5th and 6th weeks only. Respiratory exchange ratio decreased significantly during the dosing period of 5th and 6th weeks in groups 4, 6, and 8. Animals were sacrificed 24 hours after the ten-week exercise, tissues isolated and analyzed. Sarin significantly decreased butyrylcholine esterase (BChE) activity in plasma; AChE activity in platelet, triceps muscle, and striatum; neurotoxic esterase (NTE) activity in platelets, spinal cord, cortex and striatum and malondialdehyde (MDA) levels in sciatic nerve and cord. Sarin plus exercise significantly reduced BChE activity in plasma; acetylcholinesterase (AChE) activity in platelets, muscle, nerve and striatum; NTE activity in platelets, cord, cortex and striatum; and increased creatinine phosphokinase (CK) activity in plasma and MDA levels in cord. Pyridostigmine plus exercise significantly decrease BChE activity in plasma; AChE activity in muscle and enhanced malondialdehyde (MDA) levels in muscle. Pyridostigmine plus sarin significantly decreased NTE activity in platelets, cord, cortex and striatum. Pyridostigmine plus sarin plus exercise significantly altered AChE activity and MDA levels in muscle; and NTE activity in platelets, nerve, cord and cortex. Exercise significantly augmented the changes in plasma CK activity, muscle and nerve AChE activity, platelet NTE activity and cord MDA levels induced by sarin. It is concluded that physical stress (exercise) enhanced the persistent/delayed toxic effects of low-dose sarin and pyridostigmine in specific tissues of mice.


Subject(s)
Physical Exertion/physiology , Pyridostigmine Bromide/toxicity , Sarin/toxicity , Stress, Physiological/metabolism , Animals , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Mice , Physical Exertion/drug effects , Pyridostigmine Bromide/administration & dosage , Sarin/administration & dosage , Time Factors
4.
Mol Cell Biochem ; 247(1-2): 37-44, 2003 May.
Article in English | MEDLINE | ID: mdl-12841629

ABSTRACT

Many individuals with cardiovascular diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP) and alterations in nitric oxide (NO), glutathione (GSH), antioxidant enzyme activities and lipid peroxidation in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) training + nitroglycerin for 8 weeks. BP, heart rate (HR) and respiratory exchange ratio (RER) were monitored weekly for 8 weeks using tail-cuff method and oxygen/carbon dioxide analyzer, respectively. The animals were sacrificed 24 h after last treatments and plasma isolated and analyzed using HPLC, ELISA and UV-VIS spectrophotometric techniques. The results show that exercise conditioning significantly enhanced NO production (p < 0.001), GSH levels (p < 0.001), GSH/GSSG ratio (p < 0.05) and the up-regulation of the activities of catalase (CAT) (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.001), and glutathione reductase (GR) (p < 0.05), and depression of lactate levels (p < 0.001) in the plasma of the rat. These biochemical changes were accompanied by a significant increase in RER (p < 0.001) without a significant change in BP and HR. Chronic nitroglycerin administration significantly increased NO levels (p < 0.05), GSH levels (p < 0.001), superoxide dismutase (SOD) activity (p < 0.05), GST activity (p < 0.05), and decreased MDA levels (p < 0.05). These biochemical changes were accompanied by a significant decrease in BP (p < 0.05) and without any significant changes in HR and RER. Interaction of exercise training and chronic nitroglycerin treatment resulted in normalization of plasma NO, MDA, lactate levels, and CAT activity. The combination of exercise and nitroglycerin significantly enhanced GSH levels (p < 0.05), and the up-regulation of SOD (p < 0.001), GSH-Px (p < 0.05), GR (p < 0.05) and GST (p < 0.001) activities. These biochemical changes were accompanied by normalization of BP and a significant increased in RER (p < 0.001). The data suggest that the interaction of physical training and chronic nitroglycerin treatment resulted in the maintenance of BP and the up-regulation of plasma antioxidant enzyme activities and GSH levels in the rat.


Subject(s)
Antioxidants/metabolism , Blood Pressure/drug effects , Nitroglycerin/pharmacology , Oxidants/blood , Physical Conditioning, Animal , Animals , Catalase/blood , Catalase/drug effects , Glutathione/blood , Glutathione Peroxidase/blood , Glutathione Peroxidase/drug effects , Glutathione Reductase/blood , Glutathione Reductase/drug effects , Heart Rate/drug effects , Lactates/blood , Lipid Peroxidation/drug effects , Male , Nitric Oxide/blood , Nitroglycerin/administration & dosage , Rats , Rats, Inbred F344 , Respiration/drug effects , Superoxide Dismutase/blood , Superoxide Dismutase/drug effects
5.
Pharmacol Toxicol ; 91(2): 83-9, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12420797

ABSTRACT

Abstract: Carboplatin, a second-generation platinum-containing anticancer drug, is currently being used against a variety of cancers. High-dose carboplatin chemotherapy can cause renal tubular injury in cancer patients. However, the biochemical mechanism of carboplatin-induced renal injury has not been well studied. This study investigated the dose response of carboplatin-induced changes in endogenous antioxidants, lipid peroxidation and platinum content in rat kidney. Male Wistar rats (250-300 g) were divided into five groups and treated as follows: (1) control (saline, intraperitoneally); (2) carboplatin (64 mg/kg, intraperitoneally); (3) carboplatin (128 mg/kg, intraperitoneally); (4) carboplatin (192 mg/kg, intraperitoneally); and (5) carboplatin (256 mg/kg, intraperitoneally). The animals were sacrificed four days after treatment. The blood and kidneys were isolated and analyzed. Plasma creatinine and blood urea nitrogen levels were increased significantly in response to carboplatin in a dose-dependent manner. Renal superoxide dismutase and catalase activities were decreased significantly due to carboplatin at dosages of 128 mg/kg and above. The protein expressions of renal copper/zinc-superoxide dismutase and manganese-superoxide dismutase significantly depleted after carboplatin. Carboplatin (192 and 256 mg/kg) significantly increased lipid peroxidation (malondialdehyde concentration) in rat kidneys. Carboplatin dose-dependently increased the renal platinum concentration, with significance at dosages of 128 mg/kg and above. Carboplatin (256 mg/kg) significantly increased renal xanthine oxidase activity, while ratio of reduced to oxidized glutathione depleted significantly. The data suggested that carboplatin caused dose-dependent oxidative renal injury, as evidenced by renal antioxidant depletion, enhanced lipid peroxidation, platinum content, plasma creatinine and blood urea nitrogen levels in rats.


Subject(s)
Antineoplastic Agents/toxicity , Carboplatin/toxicity , Kidney/drug effects , Animals , Antineoplastic Agents/adverse effects , Carboplatin/adverse effects , Creatinine/blood , Dose-Response Relationship, Drug , Kidney/enzymology , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...