Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34941733

ABSTRACT

The invasion of the tetrodotoxin (TTX)-bearing silver-cheeked toadfish and potential poisoning due to its consumption (tetrodotoxication) threatens public safety in the Mediterranean Sea. In this study, TTX and TTX analogues of Lagocephalus sceleratus (Gmelin, 1789) were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) in fish collected off the island of Crete (Southern Mediterranean). We tested the synergistic effect of a suite of factors potentially affecting toxins' levels and tetrodotoxication risk using general and generalized linear models, respectively. The type of tissue, geographic origin (Cretan Sea, Libyan Sea), sex, and fish maturity stage were significant predictors of toxin concentrations. Mean TTX was higher in gonads and lower in muscles, higher in the Libyan Sea and in female fish, and lower in juvenile (virgin) fish. The concentration of TTX was also significantly and positively correlated with the concentration of several TTX analogues (4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, 5,11/6,11-dideoxyTTX, 5,6,11-trideoxyTTX, 11-norTTX-6-ol). The analysis showed that fish originating from the Libyan Sea had significantly higher probability to cause tetrodotoxication in case of consumption. The variability explained by the models developed in this study was relatively low, indicating that toxin levels are hard to predict and the consumption of L. sceleratus should therefore be avoided.


Subject(s)
Foodborne Diseases/prevention & control , Tetraodontiformes , Tetrodotoxin/analogs & derivatives , Tetrodotoxin/toxicity , Animals , Greece , Introduced Species , Mediterranean Sea
2.
J Fish Biol ; 98(1): 277-286, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33030741

ABSTRACT

Otolith structure is a useful tool in discrimination among fish populations as it is a permanent record of the influence of endogenous and exogenous factors. In the present study we examined otolith morphology and fluctuating asymmetry (FA) for differences between wild-caught (by bottom trawl) and reared specimens of Gilthead seabream (Sparus aurata). Based on the frequency of regenerated scales (degree of scale regeneration, SRD) on each specimen, a threshold of 30% SRD was used to assign wild-caught fish individuals as wild (≤30% SRD, LR group) or as possible aquaculture escapees (>30% SRD, HR group). Based on the analysis of elliptic Fourier descriptors, significant differences were found in otolith shape between reared (Rr) and the wild-caught groups (LR, HR). Reared fish had otoliths with significantly larger perimeter (OP ) than wild-caught fish. Furthermore, FA was significantly higher in the Rr than the LR group for OP and all except one shape descriptors (harmonics 2-7). The HR group exhibited intermediate levels of FA between the low and high FA levels observed in the LR and Rr groups. Results are discussed in terms of the value of combining otolith and scale morphology for the identification of escapees in wild Gilthead seabream stocks.


Subject(s)
Aquaculture , Otolithic Membrane/anatomy & histology , Sea Bream/anatomy & histology , Animals , Species Specificity
3.
PLoS One ; 14(8): e0219671, 2019.
Article in English | MEDLINE | ID: mdl-31415572

ABSTRACT

A 1-D full-life-cycle, Individual-based model (IBM), two-way coupled with a hydrodynamic/biogeochemical model, is demonstrated for anchovy and sardine in the N. Aegean Sea (Eastern Mediterranean). The model is stage-specific and includes a 'Wisconsin' type bioenergetics, a diel vertical migration and a population dynamics module, with the incorporation of known differences in biological attributes between the anchovy and sardine stocks. A new energy allocation/egg production algorithm was developed, allowing for breeding pattern to move along the capital-income breeding continuum. Fish growth was calibrated against available size-at-age data by tuning food consumption (the half saturation coefficients) using a genetic algorithm. After a ten-years spin up, the model reproduced well the magnitude of population biomasses and spawning periods of the two species in the N. Aegean Sea. Surprisingly, model simulations revealed that anchovy depends primarily on stored energy for egg production (mostly capital breeder) whereas sardine depends heavily on direct food intake (income breeder). This is related to the peculiar phenology of plankton production in the area, with mesozooplankton concentration exhibiting a sharp decrease from early summer to autumn and a subsequent increase from winter to early summer. Monthly changes in somatic condition of fish collected on board the commercial purse seine fleet followed closely the simulated mesozooplankton concentration. Finally, model simulations showed that, when both the anchovy and sardine stocks are overexploited, the mesozooplankton concentration increases, which may open up ecological space for competing species. The importance of protecting the recruit spawners was highlighted with model simulations testing the effect of changing the timing of the existing 2.5-months closed period. Optimum timing for fishery closure is different for anchovy and sardine because of their opposite spawning and recruitment periods.


Subject(s)
Fishes/growth & development , Life Cycle Stages , Models, Theoretical , Animals , Calibration , Fisheries , Food Chain , Mediterranean Sea
4.
PLoS One ; 10(8): e0135808, 2015.
Article in English | MEDLINE | ID: mdl-26313648

ABSTRACT

Geostatistical techniques were applied and a series of spatial indicators were calculated (occupation, aggregation, location, dispersion, spatial autocorrelation and overlap) to characterize the spatial distributions of European anchovy and sardine during summer. Two ecosystems were compared for this purpose, both located in the Mediterranean Sea: the Strait of Sicily (upwelling area) and the North Aegean Sea (continental shelf area, influenced by freshwater). Although the biomass of anchovy and sardine presented high interannual variability in both areas, the location of the centres of gravity and the main spatial patches of their populations were very similar between years. The size of the patches representing the dominant part of the abundance (80%) was mostly ecosystem- and species-specific. Occupation (area of presence) appears to be shaped by the extent of suitable habitats in each ecosystem whereas aggregation patterns (how the populations are distributed within the area of presence) were species-specific and related to levels of population biomass. In the upwelling area, both species showed consistently higher occupation values compared to the continental shelf area. Certain characteristics of the spatial distribution of sardine (e.g. spreading area, overlapping with anchovy) differed substantially between the two ecosystems. Principal component analysis of geostatistical and spatial indicators revealed that biomass was significantly related to a suite of, rather than single, spatial indicators. At the spatial scale of our study, strong correlations emerged between biomass and the first principal component axis with highly positive loadings for occupation, aggregation and patchiness, independently of species and ecosystem. Overlapping between anchovy and sardine increased with the increase of sardine biomass but decreased with the increase of anchovy. This contrasting pattern was attributed to the location of the respective major patches combined with the specific occupation patterns of the two species. The potential use of spatial indices as auxiliary stock monitoring indicators is discussed.


Subject(s)
Animal Distribution , Biomass , Ecosystem , Population Density , Spatial Analysis , Animals , Fishes , Geography , Species Specificity
5.
PLoS One ; 9(7): e101498, 2014.
Article in English | MEDLINE | ID: mdl-24992576

ABSTRACT

A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002-2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the "mean" spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic character of the study areas, highlighting the role of areas where the local environmental regimes meet 'the ocean triad hypothesis'.


Subject(s)
Ecosystem , Fishes/physiology , Animals , Biomass , Environment , Mediterranean Sea , Principal Component Analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...