Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Cancer Res ; 27(12): 3456-3468, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33782031

ABSTRACT

PURPOSE: The JAK1/2 inhibitor ruxolitinib has demonstrated significant benefits for patients with myeloproliferative neoplasms (MPN). However, patients often lose response to ruxolitinib or suffer disease progression despite therapy with ruxolitinib. These observations have prompted efforts to devise treatment strategies to improve therapeutic efficacy in combination with ruxolitinib therapy. Activation of JAK-STAT signaling results in dysregulation of key downstream pathways, notably increased expression of cell-cycle mediators including CDC25A and the PIM kinases. EXPERIMENTAL DESIGN: Given the involvement of cell-cycle mediators in MPNs, we sought to examine the efficacy of therapy combining ruxolitinib with a CDK4/6 inhibitor (LEE011) and a PIM kinase inhibitor (PIM447). We utilized JAK2-mutant cell lines, murine models, and primary MPN patient samples for these studies. RESULTS: Exposure of JAK2-mutant cell lines to the triple combination of ruxolitinib, LEE011, and PIM447 resulted in expected on-target pharmacodynamic effects, as well as increased apoptosis and a decrease in the proportion of cells in S-phase, compared with ruxolitinib. As compared with ruxolitinib monotherapy, combination therapy led to reductions in spleen and liver size, reduction of bone marrow reticulin fibrosis, improved overall survival, and elimination of disease-initiating capacity of treated bone marrow, in murine models of MPN. Finally, the triple combination reduced colony formation capacity of primary MPN patient samples to a greater extent than ruxolitinib. CONCLUSIONS: The triple combination of ruxolitinib, LEE011, and PIM447 represents a promising therapeutic strategy with the potential to increase therapeutic responses in patients with MPN.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Animals , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6 , Humans , Janus Kinase 1 , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
2.
Semin Cell Dev Biol ; 114: 93-112, 2021 06.
Article in English | MEDLINE | ID: mdl-33082117

ABSTRACT

Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.


Subject(s)
Epithelial Cells/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Human/growth & development , Animals , Cell Differentiation , Female , Humans
3.
JCI Insight ; 3(22)2018 11 15.
Article in English | MEDLINE | ID: mdl-30429377

ABSTRACT

Mutations in the ER chaperone calreticulin (CALR) are common in myeloproliferative neoplasm (MPN) patients, activate the thrombopoietin receptor (MPL), and mediate constitutive JAK/STAT signaling. The mechanisms by which CALR mutations cause myeloid transformation are incompletely defined. We used mass spectrometry proteomics to identify CALR-mutant interacting proteins. Mutant CALR caused mislocalization of binding partners and increased recruitment of FLI1, ERP57, and CALR to the MPL promoter to enhance transcription. Consistent with a critical role for CALR-mediated JAK/STAT activation, we confirmed the efficacy of JAK2 inhibition on CALR-mutant cells in vitro and in vivo. Due to the altered interactome induced by CALR mutations, we hypothesized that CALR-mutant MPNs may be vulnerable to disruption of aberrant CALR protein complexes. A synthetic peptide designed to competitively inhibit the carboxy terminal of CALR specifically abrogated MPL/JAK/STAT signaling in cell lines and primary samples and improved the efficacy of JAK kinase inhibitors. These findings reveal what to our knowledge is a novel potential therapeutic approach for patients with CALR-mutant MPN.


Subject(s)
Antineoplastic Agents/pharmacology , Calreticulin/genetics , Leukemia/genetics , Myeloproliferative Disorders/genetics , Animals , Calreticulin/antagonists & inhibitors , Calreticulin/metabolism , Cell Line , Chromatin/metabolism , Drug Delivery Systems , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Janus Kinases/antagonists & inhibitors , Leukemia/drug therapy , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mutagenesis , Myeloproliferative Disorders/drug therapy , Receptors, Thrombopoietin/genetics , Signal Transduction
5.
J Clin Invest ; 128(2): 789-804, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29355841

ABSTRACT

Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q-mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Isocitrate Dehydrogenase/genetics , Janus Kinase 2/genetics , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Aged , Animals , Disease Progression , Epigenesis, Genetic , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Mutant Strains , Mice, Transgenic , Middle Aged , Mutation , Phenotype , Stem Cells
6.
Nat Med ; 23(9): 1086-1094, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28825717

ABSTRACT

Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels. Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance. Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD. We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo. These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.


Subject(s)
Apolipoprotein C-III/genetics , Lipoproteins/metabolism , Mutation, Missense , Triglycerides/metabolism , Aged , Animals , Antibodies, Monoclonal/pharmacology , Apolipoprotein C-III/drug effects , Apolipoproteins B/metabolism , Cholesterol, HDL/metabolism , Chromatography, Liquid , Computer Simulation , Coronary Disease/genetics , Cross-Sectional Studies , Female , Humans , Immunoblotting , Lipid Metabolism/genetics , Lipoproteins/drug effects , Lipoproteins, VLDL/metabolism , Male , Mass Spectrometry , Mice , Mice, Knockout , Mice, Transgenic , Middle Aged , Protective Factors , Tandem Mass Spectrometry
7.
Cell Metab ; 24(2): 234-45, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27508872

ABSTRACT

Human genetics studies have implicated GALNT2, encoding GalNAc-T2, as a regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, but the mechanisms relating GALNT2 to HDL-C remain unclear. We investigated the impact of homozygous GALNT2 deficiency on HDL-C in humans and mammalian models. We identified two humans homozygous for loss-of-function mutations in GALNT2 who demonstrated low HDL-C. We also found that GALNT2 loss of function in mice, rats, and nonhuman primates decreased HDL-C. O-glycoproteomics studies of a human GALNT2-deficient subject validated ANGPTL3 and ApoC-III as GalNAc-T2 targets. Additional glycoproteomics in rodents identified targets influencing HDL-C, including phospholipid transfer protein (PLTP). GALNT2 deficiency reduced plasma PLTP activity in humans and rodents, and in mice this was rescued by reconstitution of hepatic Galnt2. We also found that GALNT2 GWAS SNPs associated with reduced HDL-C also correlate with lower hepatic GALNT2 expression. These results posit GALNT2 as a direct modulator of HDL metabolism across mammals.


Subject(s)
Lipoproteins, HDL/metabolism , N-Acetylgalactosaminyltransferases/deficiency , Amino Acid Sequence , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins , Angiopoietins/metabolism , Animals , Base Sequence , Cholesterol, HDL/blood , Gene Knockdown Techniques , Glycoproteins/metabolism , Homozygote , Humans , Liver/enzymology , Mice , Mice, Knockout , Models, Animal , Mutation/genetics , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Phenotype , Phospholipid Transfer Proteins/metabolism , Polymorphism, Single Nucleotide/genetics , Primates , Proteomics , Rats , Triglycerides/metabolism , Polypeptide N-acetylgalactosaminyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...