Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 272(Pt 2): 132938, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848831

ABSTRACT

Colored corn pericarp contains unusually high amounts of industrially valuable phytochemicals, such as anthocyanins, flavanols, flavonoids, and phenolic acids. Polyphenols were extracted in an aqueous solution and spray-dried to produce microencapsulates using four carrier materials, namely, maltodextrin (MD), gum arabic (GA), methylcellulose (MC), and skim milk powder (SMP) at three concentrations (1, 2, and 3 %, respectively). The encapsulates were evaluated for their polyphenolic contents using spectrophotometric techniques and HPLC analyses, and their antioxidant properties were evaluated using four different assays. The physicochemical properties of encapsulates were analyzed by measuring the zeta potential (ZP), particle size distribution, water solubility index (WSI), water absorption index (WAI), and color parameters. Structural and thermal properties were evaluated using Fourier transform infrared spectroscopy (FTIR), optical profilometry, and differential scanning calorimetry (DSC) analyses. Comparative analysis of structural characteristics, particle size distribution, zeta potential, WSI, WAI, and aw of the samples confirmed the successful formulation of encapsulates. The microencapsulates embedded with 1 % concentrations of MD, MC, GA, or SMP retained polyphenolic compounds and exhibited noteworthy antioxidant properties. The samples encapsulated with GA or MD (1 %) demonstrated superior physicochemical, color, and thermal properties. Comprehensive metabolomic analysis confirmed the presence of 38 phytochemicals in extracts validating the spray-drying process.


Subject(s)
Antioxidants , Drug Compounding , Polyphenols , Spray Drying , Zea mays , Polyphenols/chemistry , Zea mays/chemistry , Antioxidants/chemistry , Drug Compounding/methods , Particle Size , Gum Arabic/chemistry , Macromolecular Substances/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry
2.
Ultrason Sonochem ; 95: 106418, 2023 May.
Article in English | MEDLINE | ID: mdl-37094478

ABSTRACT

For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.


Subject(s)
Anthocyanins , Antioxidants , Antioxidants/chemistry , Anthocyanins/chemistry , Zea mays , Plant Extracts/chemistry , Phenols/chemistry , Ethanol/chemistry
3.
Food Funct ; 14(2): 569-601, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36537225

ABSTRACT

Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.


Subject(s)
Chemical Fractionation , Research Design , Chemical Fractionation/methods , Food Analysis
4.
Commun Integr Biol ; 13(1): 43-53, 2020.
Article in English | MEDLINE | ID: mdl-32313606

ABSTRACT

A major bottleneck in the commercialization of plant-based pest management compounds is that the extraction methods are complex, time-consuming, and even highly expensive. Using a recently developed inexpensive extraction and quantification methodology to isolate polyphenols (including anthocyanins and condensed tannins) from purple corn pericarp, we examined their effects on Manduca sexta, a common insect herbivore. Following up on our previous work which demonstrated the negative impacts of polyphenol-rich extract on larval stages, we further examined whether there are any cascading effects on subsequent life stages (pupal and adult) including any possible transgenerational effects. Our results show that polyphenol-rich purple corn extract-fed caterpillars had significantly lower pupal mass and survival. Moreover, adult moths also had lower mass when eclosed from caterpillars reared on the extract diet. To test whether there were any transgenerational effects, we allowed male and female adults fed on purple corn extract diet and control diet to mate and lay eggs in a full factorial experiment. We found that purple corn extract-fed adult pair laid a lower number of eggs compared to other treatments. In addition, we also found that second instar M. sexta caterpillars hatched from eggs laid by any mating combination with at least one parent reared on purple corn extract gained significantly lower mass compared to caterpillars with both parents reared on the control diet. Taken together, our results show that there are cascading negative effects for feeding purple corn pericarp extract on pupal, adult, and second generation of M. sexta, reaffirming its potential application as a cost-effective and environmentally friendly pest deterrent.

5.
Insects ; 11(2)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024239

ABSTRACT

Plant secondary metabolites such as terpenes, phenolics, glycosides, and alkaloids play various functional roles including pigmentation, foliar and floral volatile synthesis, hormonal regulation, and direct and indirect defenses. Among these, phenolic compounds are commonly found in plants, but vary in the distribution of their specific compounds among plant families. Polyphenols, including anthocyanins and tannins, are widely distributed and have been well documented for their roles- primarily in plant pigmentation and also in plant defenses. However, commercialization of such compounds for use in insect pest management is severely hampered by expensive, inefficient, and time-consuming extraction protocols. Using a recently developed inexpensive and easy extraction method using the byproducts of pigmented (purple) corn processing, we examined whether the crude pericarp extract rich in polyphenols can affect the growth and development of tobacco hornworm (Manduca sexta L.) caterpillars. Our findings show that purple corn pericarp extract negatively affected M. sexta egg hatching and larval mass gain and prolonged developmental time compared to regular yellow corn extract or an artificial control diet. We also found that these effects were more severe during the early stages of caterpillar development. These results conclusively demonstrate that purple corn pericarp, an inexpensive by-product of the corn milling industry, is a valuable product with excellent potential as an insect antifeedant.

6.
J Agric Food Chem ; 67(33): 9148-9159, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-30785272

ABSTRACT

The aim was to characterize a phenolic-rich water extract from the pericarp of an improved genotype of Apache red maize (RPE) and evaluate its ability to activate the type 2 diabetes markers free fatty acid receptor 1 (GPR40) and glucokinase (GK) in vitro. The extract contained mainly phenolic acids, anthocyanins, and other flavonoids. RPE inhibited α-amylase (IC50 = 88.3 µg/mL), α-glucosidase (IC50 = 169.3 µg/mL), and reduced glucose transport in a Caco-2 cell monolayer (up to 25%). Furthermore, RPE activated GPR40 (EC50 = 77.7 µg/mL) in pancreatic INS-1E cells and GK (EC50 = 43.4 µg/mL) in liver HepG2 cells, potentially through allosteric modulation. RPE activated GPR40-related insulin secretory pathway and activated the glucose metabolism regulator AMPK (up to 78%). Our results support the hypothesis that foods with a high concentration of anthocyanins and phenolic acids, such as in the selected variety of maize used, could ameliorate obesity and type 2 diabetes comorbidities.


Subject(s)
Anthocyanins/pharmacology , Diabetes Mellitus, Type 2/metabolism , Flavonoids/pharmacology , Glucokinase/antagonists & inhibitors , Hydroxybenzoates/pharmacology , Plant Extracts/pharmacology , Receptors, G-Protein-Coupled/metabolism , Zea mays/chemistry , Anthocyanins/chemistry , Anthocyanins/isolation & purification , Biological Transport/drug effects , Caco-2 Cells , Diabetes Mellitus, Type 2/genetics , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Flavonoids/chemistry , Flavonoids/isolation & purification , Glucokinase/metabolism , Glucose/metabolism , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liver/cytology , Liver/drug effects , Liver/metabolism , Molecular Docking Simulation , Pancreas/cytology , Pancreas/drug effects , Pancreas/metabolism , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Receptors, G-Protein-Coupled/genetics , Zea mays/genetics , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism
7.
Food Chem ; 231: 332-339, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28450015

ABSTRACT

The aim was to compare the distribution of ANCs in purple and blue corn coproducts from three conventional corn fractionation processes and linking ANC partitioning in different coproducts to corn kernel phenotype. Total monomeric anthocyanin (TA) from purple corn extract was 4933.1±43.4mg cyanidin-3-glucoside equivalent per kg dry corn, 10 times more than blue corn. In dry milled purple corn, maximum ANCs were present in the pericarp (45.9% of total ANCs) and in wet-milling they were concentrated in steeping water (79.1% of total ANCs). For blue corn, the highest TA was in small grits and gluten slurry in dry-milling and wet-milling coproducts, respectively. HPLC showed the highest concentration of each ANC in steeping water for purple corn coproducts. Micrographs of kernel showed pigments concentrated in pericarp layer of purple but only in aleurone of blue corn. ANCs can concentrate in certain coproducts depending upon physical distribution of pigments in kernel.


Subject(s)
Anthocyanins , Zea mays , Chemical Fractionation , Glutens
SELECTION OF CITATIONS
SEARCH DETAIL
...