Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters











Publication year range
1.
Anal Chem ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138126

ABSTRACT

Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.

2.
ACS Sens ; 9(5): 2662-2672, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38689483

ABSTRACT

Dopamine (DA) signaling is critically important in striatal function, and this metabolically demanding process is fueled largely by glucose. However, DA and glucose are typically studied independently and, as such, the precise relationship between DA release and glucose availability remains unclear. Fast-scan cyclic voltammetry (FSCV) is commonly coupled with carbon-fiber microelectrodes to study DA transients. These microelectrodes can be modified with glucose oxidase (GOx) to generate microbiosensors capable of simultaneously quantifying real-time and physiologically relevant fluctuations of glucose, a nonelectrochemically active substrate, and DA, which is readily oxidized and reduced at the electrode surface. A chitosan hydrogel can be electrodeposited to entrap the oxidase enzyme on the sensor surface for stable, sensitive, and selective codetection of glucose and DA using FSCV. This strategy can also be used to entrap lactate oxidase on the carbon-fiber surface for codetection of lactate and DA. However, these custom probes are individually fabricated by hand, and performance is variable. This study characterizes the physical nature of the hydrogel and its effects on the acquired electrochemical data in the detection of glucose (2.6 mM) and DA (1 µM). The results demonstrate that the electrodeposition of the hydrogel membrane is improved using a linear potential sweep rather than a direct step to the target potential. Electrochemical impedance spectroscopy data relate information on the physical nature of the electrode/solution interface to the electrochemical performance of bare and enzyme-modified carbon-fiber microelectrodes. The electrodeposition waveform and scan rate were characterized for optimal membrane formation and performance. Finally, codetection of both DA/glucose and DA/lactate was demonstrated in intact rat striatum using probes fabricated according to the optimized protocol. Overall, this work improves the reliable fabrication of carbon-fiber microbiosensors for codetection of DA and important energetic substrates that are locally delivered to the recording site to meet metabolic demand.


Subject(s)
Biosensing Techniques , Carbon Fiber , Dopamine , Glucose Oxidase , Glucose , Microelectrodes , Dopamine/analysis , Glucose/analysis , Carbon Fiber/chemistry , Biosensing Techniques/methods , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Animals , Carbon/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Hydrogels/chemistry , Rats , Rats, Sprague-Dawley , Brain/metabolism , Chitosan/chemistry , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
3.
Anal Chem ; 96(16): 6097-6105, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38597398

ABSTRACT

This perspective encompasses a focused review of the literature leading to a tipping point in electroanalytical chemistry. We tie together the threads of a "revolution" quietly in the making for years through the work of many authors. Long-held misconceptions about the use of background subtraction in fast voltammetry are addressed. We lay out future advantages that accompany background-inclusive voltammetry, particularly when paired with modern machine-learning algorithms for data analysis.

4.
J Chem Educ ; 100(12): 4853-4859, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38106547

ABSTRACT

There is an increasing need for fundamental electrochemistry concepts to be taught in the undergraduate curriculum, given the broad applicability of electrochemical technologies in addressing a wide range of global issues from critical energy shortages to real-time medical diagnostics. However, many electrochemical concepts are often taught in disparate laboratory experiments, spread out through the curriculum, which can be intimidating to students (and instructors). This experiment, which has been tested and optimized in the undergraduate classroom over multiple semesters, covers a wide range of electrochemistry topics in realizing the construction of a hydrogen peroxide (H2O2) sensor that is based on Prussian blue electrochemistry. The experiment introduces the fundamentals of cyclic voltammetry by prompting students to distinguish faradaic and capacitive components of voltammograms and to investigate their relationship with scan rate as per electrochemical theory. Students also evaluate electrocatalysis through electrodeposition of a thin film of Prussian blue on the sensor surface and the effects of this modification on electron transfer and sensor performance. Finally, students combine amperometric measurements with the method of standard additions to determine H2O2 concentrations in an unknown sample. Overall, this experiment offers an integrated and cohesive experience that connects many important electroanalytical concepts that are often taught individually into one 3 h, hands-on laboratory experiment that requires minimal resources.

5.
ACS Sens ; 8(11): 4091-4100, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37962541

ABSTRACT

Glutamate and dopamine (DA) represent two key contributors to striatal functioning, a region of the brain that is essential to motor coordination and motivated behavior. While electroanalytical techniques can be utilized for rapid, spatially resolved detection of DA in the interferent-rich brain environment, glutamate, a nonelectroactive analyte, cannot be directly detected using electroanalytical techniques. However, it can be probed using enzyme-based sensors, which generate an electroactive reporter in the presence of glutamate. The vast majority of glutamate biosensors have relied on amperometric sensing, which is an inherently nonselective detection technique. This approach necessitates the use of complex and performance-limiting modifications to ensure the desired single-analyte specificity. Here, we present a novel glutamate microbiosensor fabricated on a carbon-fiber microelectrode substrate and coupled with fast-scan cyclic voltammetry (FSCV) to enable the simultaneous quantification of glutamate and DA at single recording sites in the brain, which is impossible when using typical amperometric approaches. The glutamate microbiosensors were characterized for sensitivity, stability, and selectivity by using a voltammetric waveform optimized for the simultaneous detection of both species. The applicability of these sensors for the investigation of neural circuits was validated in the rat ventral striatum. Electrically evoked glutamate and DA release were recorded at single-micrometer-scale locations before and after pharmacological manipulation of glutamatergic signaling. Our novel glutamate microbiosensor advances the state of the art by providing a powerful tool for probing coordination between these two species in a way that has previously not been possible.


Subject(s)
Dopamine , Glutamic Acid , Rats , Animals , Rats, Sprague-Dawley , Carbon Fiber , Brain
6.
ACS Chem Neurosci ; 14(20): 3726-3727, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849295
7.
J Am Chem Soc ; 145(44): 24071-24080, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37857375

ABSTRACT

The endogenous opioid system is commonly targeted in pain treatment, but the fundamental nature of neuropeptide release remains poorly understood due to a lack of methods for direct detection of specific opioid neuropeptides in situ. These peptides are concentrated in, and released from, large dense-core vesicles in chromaffin cells. Although catecholamine release from these neuroendocrine cells is well characterized, the direct quantification of opioid peptide exocytosis events has not previously been achieved. In this work, a planar carbon-fiber microelectrode served as a "postsynaptic" sensor for probing catecholamine and neuropeptide release dynamics via amperometric monitoring. A constant potential of 500 mV was employed for quantification of catecholamine release, and a higher potential of 1000 mV was used to drive oxidation of tyrosine, the N-terminal amino acid in the opioid neuropeptides released from chromaffin cells. By discriminating the results collected at the two potentials, the data reveal unique kinetics for these two neurochemical classes at the single-vesicle level. The amplitude of the peptidergic signals decreased with repeat stimulation, as the halfwidth of these signals simultaneously increased. By contrast, the amplitude of catecholamine release events increased with repeat stimulation, but the halfwidth of each event did not vary. The chromogranin dense core was identified as an important mechanistic handle by which separate classes of transmitter can be kinetically modulated when released from the same population of vesicles. Overall, the data provide unprecedented insight into key differences between catecholamine and opioid neuropeptide release from isolated chromaffin cells.


Subject(s)
Chromaffin Cells , Neuropeptides , Analgesics, Opioid/pharmacology , Chromaffin Cells/metabolism , Catecholamines , Neuropeptides/metabolism , Neuropeptides/pharmacology , Exocytosis/physiology
8.
ACS Sens ; 8(8): 3187-3194, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37552870

ABSTRACT

Carbon fiber microelectrodes are commonly used for real-time monitoring of individual exocytosis events at single cells. Since the nature of an electrochemical signal is fundamentally governed by mass transport to the electrode surface, microelectrode geometry can be exploited to achieve precise and accurate measurements. Researchers traditionally pair amperometric measurements of exocytosis with a ∼10-µm diameter, disk microelectrode in an "artificial synapse" configuration to directly monitor individual release events from single cells. Exocytosis is triggered, and released molecules diffuse to the "post-synaptic" electrode for oxidation. This results in a series of distinct current spikes corresponding to individual exocytosis events. However, it remains unclear how much of the material escapes detection. In this work, the performance of 10- and 34-µm diameter carbon fiber disk microelectrodes was directly compared in monitoring exocytosis at single chromaffin cells. The 34-µm diameter electrode was more sensitive to catecholamines and enkephalins than its traditional, 10-µm diameter counterpart, and it more effectively covered the entire cell. As such, the larger sensor detected more exocytosis events overall, as well as a larger quantal size, suggesting that the traditional tools underestimate the above measurements. Both sensors reliably measured l-DOPA-evoked changes in quantal size, and both exhibited diffusional loss upon adjustment of cell-electrode spacing. Finite element simulations using COMSOL support the improved collection efficiency observed using the larger sensor. Overall, this work demonstrates how electrode geometry can be exploited for improved detection of exocytosis events by addressing diffusional loss─an often-overlooked source of inaccuracy in single-cell measurements.


Subject(s)
Chromaffin Cells , Exocytosis , Microelectrodes , Carbon Fiber , Exocytosis/physiology , Catecholamines
9.
ACS Chem Neurosci ; 14(12): 2253-2255, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37276431

ABSTRACT

After being postponed twice due to the global COVID-19 pandemic, approximately 200 scientists gathered in Lyon, France, in late June 2022 for the 18th Biennial Monitoring Molecules in Neuroscience (MMiN) Research Conference. Although there were unprecedented challenges involved with coordinating the 18th MMiN conference, the meeting was a huge success. The meeting provided a wonderful opportunity for young neuroscientists to network and learn about the current state of molecular monitoring in neuroscience research. The topics spanned advancements in well-established analytical techniques to novel method development. Some of the noteworthy techniques expediting our understanding of circuit-level neurochemical function include multiplexed detection of numerous neurochemicals, well-established sensors leveraging enzymes and other biologic components, and the development of diverse, customizable genetically encoded sensors.


Subject(s)
COVID-19 , Neurosciences , Humans , Pandemics
10.
ACS Chem Neurosci ; 13(15): 2238-2239, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35919966
11.
Anal Chem ; 94(27): 9548-9556, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35750055

ABSTRACT

For decades, carbon-fiber microelectrodes have been used in amperometric measurements of neurotransmitter release at a wide variety of cell types, providing a tremendous amount of valuable information on the mechanisms involved in dense-core vesicle fusion. The electroactive molecules that are released can be detected at the opposing microelectrode surface, allowing for precise quantification as well as detailed kinetic information on the stages of neurotransmitter release. However, it remains unclear how much of the catecholamine that is released into the artificial synapse escapes detection. This work examines two separate mechanisms by which released neurotransmitter goes undetected in a typical amperometric measurement. First, diffusional loss is assessed by monitoring exocytosis at single bovine chromaffin cells using carbon-fiber microelectrodes fabricated in a recessed (cavity) geometry. This creates a microsampling vial that minimizes diffusional loss of analyte prior to detection. More molecules were detected per exocytotic release event when using a recessed cavity sensor as compared to the conventional configuration. In addition, pharmacological inhibition of the norepinephrine transporter (NET), which serves to remove catecholamine from the extracellular space, increased both the size and the time course of individual amperometric events. Overall, this study characterizes distinct physical and biological mechanisms by which released neurotransmitter escapes detection at the opposing microelectrode surface, while also revealing an important role for the NET in "presynaptic" modulation of neurotransmitter release.


Subject(s)
Chromaffin Cells , Exocytosis , Animals , Carbon Fiber , Catecholamines/metabolism , Cattle , Chromaffin Cells/metabolism , Exocytosis/physiology , Microelectrodes , Neurotransmitter Agents/metabolism
12.
ACS Meas Sci Au ; 2(2): 120-131, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-36785724

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.

13.
Anal Bioanal Chem ; 412(24): 6611-6624, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32666141

ABSTRACT

Glucose and lactate provide energy for cellular function in the brain and serve as an important carbon source in the synthesis of a variety of biomolecules. Thus, there is a critical need to quantitatively monitor these molecules in situ on a time scale commensurate with neuronal function. In this work, carbon-fiber microbiosensors were coupled with fast-scan cyclic voltammetry to monitor glucose and lactate fluctuations at a discrete site within rat striatum upon electrical stimulation of the midbrain projection to the region. Systematic variation of stimulation parameters revealed the distinct dynamics by which glucose and lactate responded to the metabolic demand of synaptic function. Immediately upon stimulation, extracellular glucose and lactate availability rapidly increased. If stimulation was sufficiently intense, concentrations then immediately fell below baseline in response to incurred metabolic demand. The dynamics were dependent on stimulation frequency, such that more robust fluctuations were observed when the same number of pulses was delivered at a higher frequency. The rates at which glucose was supplied to, and depleted from, the local recording region were dependent on stimulation intensity, and glucose dynamics led those of lactate in response to the most substantial stimulations. Glucose fluctuated over a larger concentration range than lactate as stimulation duration increased, and glucose fell further from baseline concentrations. These real-time measurements provide an unprecedented direct comparison of glucose and lactate dynamics in response to metabolic demand elicited by neuronal activation. Graphical abstract.


Subject(s)
Corpus Striatum/metabolism , Electric Stimulation , Glucose/metabolism , Lactic Acid/metabolism , Mesencephalon/metabolism , Animals , Biosensing Techniques , Corpus Striatum/chemistry , Electrochemical Techniques , Glucose/analysis , Lactic Acid/analysis , Male , Mesencephalon/chemistry , Microelectrodes , Rats , Rats, Sprague-Dawley
14.
Langmuir ; 36(15): 4214-4223, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32216254

ABSTRACT

Carbon-fiber microelectrodes are instrumental tools in neuroscience used for the electroanalysis of neurochemical dynamics and recordings of neural activity. However, performance is variable and dependent on fabrication strategies, the biological response to implantation, and the physical and chemical composition of the recording environment. This presents an analytical challenge, as electrode performance is difficult to quantitatively assess in situ, especially when electrodes are permanently implanted or cemented in place. We previously reported that electrode impedance directly impacts electrochemical performance for molecular sensing. In this work, we investigate the impacts of individual components of the electrochemical system on impedance. Equivalent circuit models for glass- and silica-insulated carbon-fiber microelectrodes were determined using electrochemical impedance spectroscopy (EIS). The models were validated based on the ability to assign individual circuit elements to physical properties of the electrochemical system. Investigations were performed to evaluate the utility of the models in providing feedback on how changes in ionic strength and carbon fiber material alter impedance properties. Finally, EIS measurements were used to investigate the electrode/solution interface prior to, during, and following implantation in live brain tissue. A significant increase in impedance and decrease in capacitance occur during tissue exposure and persist following implantation. Electrochemical conditioning, which occurs continually during fast-scan cyclic voltammetry recordings, etches and renews the carbon surface, mitigating these effects. Overall, the results establish EIS as a powerful method for characterization of carbon-fiber microelectrodes, providing unprecedented insight into how real-world factors affect the electrode/solution interface.


Subject(s)
Carbon , Dielectric Spectroscopy , Carbon Fiber , Electric Impedance , Microelectrodes
15.
ACS Nano ; 14(3): 2917-2926, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32058693

ABSTRACT

Carbon-fiber microelectrodes have proven to be an indispensable tool for monitoring exocytosis events using amperometry. When positioned adjacent to a cell, a traditional microdisc electrode is well suited for quantification of discrete exocytotic release events. However, the size of the electrode does not allow for intracellular electrochemical measurements, and the amperometric approach cannot distinguish between the catecholamines that are released. In this work, carbon nanoelectrodes were developed to permit selective electrochemical sampling of nanoscale vesicles in the cell cytosol. Classical voltammetric techniques and electron microscopy were used to characterize the nanoelectrodes, which were ∼5 µm long and sharpened to a nanometer-scale tip that could be wholly inserted into individual neuroendocrine cells. The nanoelectrodes were coupled with fast-scan cyclic voltammetry to distinguish secretory granules containing epinephrine from other catecholamine-containing granules encountered in the native cellular environment. Both vesicle subtypes were encountered in most cells, despite prior demonstration of populations of chromaffin cells that preferentially release one of these catecholamines. There was substantial cell-to-cell variability in relative epinephrine content, and vesicles containing epinephrine generally stored more catecholamine than the other vesicles. The carbon nanoelectrode technology thus enabled analysis of picoliter-scale biological volumes, revealing key differences between chromaffin cells at the level of the dense-core granule.


Subject(s)
Carbon Fiber/chemistry , Epinephrine/chemistry , Nanotechnology , Neuroendocrine Cells/chemistry , Norepinephrine/chemistry , Animals , Electrochemical Techniques , Electrodes , Molecular Structure , PC12 Cells , Rats , Single-Cell Analysis , Time Factors , Tumor Cells, Cultured
16.
Anal Chem ; 91(11): 7319-7327, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31081629

ABSTRACT

Background-subtracted fast-scan cyclic voltammetry (FSCV) provides a method for detecting molecular fluctuations with high spatiotemporal resolution in the brain of awake and behaving animals. The rapid scan rates generate large background currents that are subtracted to reveal changes in analyte concentration. Although these background currents are relatively stable, small changes do occur over time. These changes, referred to as electrochemical drift, result in background-subtraction artifacts that constrain the utility of FSCV, particularly when quantifying chemical changes that gradually occur over long measurement times (minutes). The voltammetric features of electrochemical drift are varied and can span the entire potential window, potentially obscuring the signal from any targeted analyte. We present a straightforward method for extending the duration of a single FSCV recording window. First, we have implemented voltammetric waveforms in pairs that consist of a smaller triangular sweep followed by a conventional voltammetric scan. The initial, abbreviated waveform is used to capture drift information that can serve as a predictor for the contribution of electrochemical drift to the subsequent full voltammetric scan using partial-least-squares regression (PLSR). This double-waveform partial-least-squares regression (DW-PLSR) paradigm permits reliable subtraction of the drift component to the voltammetric data. Here, DW-PLSR is used to improve quantification of adenosine, dopamine, and hydrogen peroxide fluctuations occurring >10 min from the initial background position, both in vitro and in vivo. The results demonstrate that DW-PLSR is a powerful tool for evaluating and interpreting both rapid (seconds) and gradual (minutes) chemical changes captured in FSCV recordings over extended durations.


Subject(s)
Adenosine/analysis , Brain/diagnostic imaging , Dopamine/analysis , Electrochemical Techniques , Hydrogen Peroxide/analysis , Least-Squares Analysis , Animals , Male , Rats , Rats, Sprague-Dawley
17.
ACS Chem Neurosci ; 10(4): 1935-1940, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30388365

ABSTRACT

µ-opioid receptors (MORs) in the nucleus accumbens (NAc) can regulate reward-related behaviors that are dependent on mesolimbic dopamine, but the precise mechanism of this MOR regulation is unknown. We hypothesized that MORs within the NAc core regulate dopamine release. Specifically, we infused the MOR antagonist CTAP (d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2) into the NAc core while dopamine release was evoked by electrical stimulation of the ventral tegmental area and measured by fast-scan cyclic voltammetry. We report that CTAP dose-dependently inhibited evoked dopamine release, with full blockade achieved with the 8 µg infusion. In contrast, evoked dopamine release increased after nomifensine infusion and was unchanged after vehicle infusion. These findings demonstrate profound local control of dopamine release by MORs within the NAc core, which has implications for regulation of reward processing.


Subject(s)
Dopamine/metabolism , Narcotic Antagonists/administration & dosage , Nucleus Accumbens/metabolism , Peptide Fragments/administration & dosage , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Somatostatin/administration & dosage , Animals , Dopamine Uptake Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Infusions, Intraventricular , Male , Nucleus Accumbens/drug effects , Rats , Rats, Long-Evans
18.
ACS Chem Neurosci ; 10(3): 1497-1505, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30412381

ABSTRACT

Substance abuse disorders are devastating, costly, and difficult to treat. Identifying the neurochemical mechanisms underlying reinforcement promises to provide critical information in the development of effective treatments. Several lines of evidence suggest that striatal dopamine (DA) release serves as a teaching signal in reinforcement learning, and that shifts in DA release from the primary reward to reward-predicting stimuli play a critical role in the self-administration of both natural and non-natural rewards. However, far less is known about the reinforcing effects of motivationally neutral sensory stimuli, or how these signals can facilitate self-administration behavior. Thus, we trained rats ( n = 7) to perform a visual stimulus-induced instrumental task, which involved lever pressing for activation of a stimulus light. We then microinfused vehicle (phosphate buffered saline), carbachol (acetylcholine receptor agonist), or carbachol in the presence of an N-methyl-d-aspartate (NMDA) receptor-specific drug (NMDA itself, or the antagonist, AP5) into the ventral tegmental area (VTA). This enabled us to directly evaluate how chemical modulation of dopamine cell bodies affects the instrumental behavior, as well as the nature of extracellular dopamine transients recorded in the nucleus accumbens shell (NAc shell) using fast-scan cyclic voltammetry (FSCV). Intra-VTA infusion of carbachol enhanced the magnitude and frequency of dopamine transients in the NAc shell and potentiated active lever responding without altering inactive lever responding, as compared to infusion of vehicle. Coinfusion of carbachol with AP5 abolished dopamine transients recorded in the NAc and attenuated active lever responding without altering inactive lever responding. Finally, coadministration of carbachol and NMDA into the VTA restored both lever pressing and dopaminergic signals recorded in the striatum. Together, these results suggest that acetylcholine and glutamate synergistically act at dopamine cells in the VTA to modulate VTA-NAc shell dopaminergic output, and this underlies motivation to lever press for a motivationally neutral visual stimulus.


Subject(s)
Cell Body/metabolism , Dopamine/metabolism , Photic Stimulation/methods , Psychomotor Performance/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Ventral Tegmental Area/metabolism , Animals , Cell Body/drug effects , Cholinergic Agonists/administration & dosage , Male , Microinjections/methods , N-Methylaspartate/administration & dosage , Psychomotor Performance/drug effects , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Ventral Tegmental Area/drug effects
19.
Anal Chem ; 90(21): 12994-12999, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30295022

ABSTRACT

Recent studies have described a role for lactate in brain energy metabolism and energy formation, challenging the conventional view that glucose is the principle energy source for brain function. To date, lactate dynamics in the brain are largely unknown, limiting insight into function. We addressed this by developing and characterizing a lactate oxidase-modified carbon-fiber microelectrode coupled with fast-scan cyclic voltammetry. This new tool boasts a sensitivity for lactate of 22 ± 1 nA·mM-1 and LOD of 7.0 ± 0.7 µM. The approach has enabled detection of rapid lactate fluctuations with unprecedented spatiotemporal resolution as well as excellent stability, selectivity, and sensitivity. The technology was characterized both in vitro and in vivo at discrete recording sites in rat striatum. We provide evidence that striatal lactate availability increases biphasically in response to electrical stimulation of the dopaminergic midbrain in the anesthetized rat. This new tool for real-time detection of lactate dynamics promises to improve understanding of how lactate availability underscores neuronal function and dysfunction.


Subject(s)
Biosensing Techniques/methods , Carbon Fiber/chemistry , Electrochemical Techniques/methods , Lactic Acid/analysis , Neostriatum/metabolism , Animals , Electrochemical Techniques/instrumentation , Enzymes, Immobilized/chemistry , Limit of Detection , Male , Microelectrodes , Mixed Function Oxygenases/chemistry , Rats, Sprague-Dawley , Sensitivity and Specificity
20.
Chemphyschem ; 19(10): 1197-1204, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29316144

ABSTRACT

Electrochemical monitoring of non-electroactive species requires a biosensor that is stable and selective, with sensitivity to physiological concentrations of targeted analytes. We have combined glucose oxidase-modified carbon-fiber microelectrodes with fast-scan cyclic voltammetry for real-time measurements of glucose fluctuations in brain tissue. Work presented herein quantitatively compares three approaches to enzyme immobilization on the microelectrode surface-physical adsorption, hydrogel entrapment, and entrapment in electrospun nanofibers. The data suggest that each of these methods can be used to create functional microbiosensors. Immobilization of glucose oxidase by physical adsorption generates a biosensor with poor sensitivity to glucose and unstable performance. Entrapment of glucose oxidase in poly(vinyl alcohol) nanofibers generates microbiosensors that are effective for glucose measurements over a large linear range, and that may be particularly useful when targeting glucose concentrations in excess of 3 mm, such as in blood. Hydrogel entrapment is the most effective in terms of sensitivity and stability. These microbiosensors can be used for simultaneous monitoring of glucose and dopamine in real time. The findings outlined herein should be applicable to other oxidase enzymes, and thus they are broadly important for the development of new tools for real-time measurements of fluctuating molecules that are not inherently electroactive.


Subject(s)
Biosensing Techniques , Carbon/chemistry , Electrochemical Techniques , Glucose Oxidase/metabolism , Glucose/analysis , Animals , Enzymes, Immobilized , Male , Microelectrodes , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL