Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 250: 116063, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38290379

ABSTRACT

Effective diagnostic tools for screening of latent tuberculosis infection (LTBI) are lacking. We aim to investigate the performance of LTBI diagnostic approaches using label-free surface-enhanced Raman spectroscopy (SERS). We used 1000 plasma samples from Northeast Thailand. Fifty percent of the samples had tested positive in the interferon-gamma release assay (IGRA) and 50 % negative. The SERS investigations were performed on individually prepared protein specimens using the Raman-mapping technique over a 7 × 7 grid area under measurement conditions that took under 10 min to complete. The machine-learning analysis approaches were optimized for the best diagnostic performance. We found that the SERS sensors provide 81 % accuracy according to train-test split analysis and 75 % for LOOCV analysis from all samples, regardless of the batch-to-batch variation of the sample sets and SERS chip. The accuracy increased to 93 % when the logistic regression model was used to analyze the last three batches of samples, following optimization of the sample collection, SERS chips, and database. We demonstrated that SERS analysis with machine learning is a potential diagnostic tool for LTBI screening.


Subject(s)
Biosensing Techniques , Latent Tuberculosis , Humans , Latent Tuberculosis/diagnosis , Interferon-gamma Release Tests/methods , Interferon-gamma , Spectrum Analysis, Raman
2.
Vet World ; 16(1): 204-214, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36855369

ABSTRACT

Background and Aim: Public health and food safety are gaining attention globally. Consumer health can be protected from chemical residues in meat by early detection or screening for antibiotic residues before selling the meat commercially. However, conventional practices are normally applied after slaughtering, which leads to massive business losses. This study aimed to use portable surface-enhanced Raman spectroscopy (SERS) equipped with multivariate curve resolution-alternation least squares (MCR-ALS) to determine the concentrations of enrofloxacin, oxytetracycline, and neomycin concentrations. This approach can overcome the problems of business loss, costs, and time-consumption, and limit of detection (LOD). Materials and Methods: Aqueous solutions of three standard antibiotics (enrofloxacin, oxytetracycline, and neomycin) with different concentrations were prepared, and the LOD for each antibiotic solution was determined using SERS. Extracted pig urine was spiked with enrofloxacin at concentrations of 10, 20, 50, 100, and 10,000 ppm. These solutions were investigated using SERS and MCR-ALS analysis. Urine samples from pigs at 1 and 7 days after enrofloxacin administration were collected and investigated using SERS and MCR-ALS to differentiate the urinary enrofloxacin concentrations. Results: The LOD of enrofloxacin, oxytetracycline, and neomycin in aqueous solutions were 0.5, 2.0, and 100 ppm, respectively. Analysis of enrofloxacin spiking in pig urine samples demonstrated the different concentrations of enrofloxacin at 10, 20, 50, 100, and 10,000 ppm. The LOD of spiking enrofloxacin was 10 ppm, which was 10 times lower than the regulated value. This technique was validated for the first time using urine collected on days 1 and 7 after enrofloxacin administration. The results revealed a higher concentration of enrofloxacin on day 7 than on day 1 due to consecutive administrations. The observed concentration of enrofloxacin was closely correlated with its circulation time and metabolism in pigs. Conclusion: A combination of SERS sensing platform and MCR-ALS is a promising technique for on-farming screening. This platform can increase the efficiency of antibiotic detection in pig urine at lower costs and time. Expansion and fine adjustments of the Raman dataset may be required for individual farms to achieve higher sensitivity.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122584, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36913899

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) has been widely studied and recognized as a powerful label-free technique for trace chemical analysis. However, its drawback in simultaneously identifying several molecular species has greatly limited its real-world applications. In this work, we reported a combination between SERS and independent component analysis (ICA) to detect several trace antibiotics which are commonly used in aquacultures, including malachite green, furazolidone, furaltadone hydrochloride, nitrofurantoin, and nitrofurazone. The analysis results indicate that the ICA method is highly effective in decomposing the measured SERS spectra. The target antibiotics could be precisely identified when the number of components and the sign of each independent component loading were properly optimized. With SERS substrates, the optimized ICA can identify trace molecules in a mixture at a concentration of 10-6 M achieving the correlation values to the reference molecular spectra of 71-98%. Furthermore, measurement results obtained from a real-world sample demonstration could also be recognized as an important basis to suggest this method is promising for monitoring antibiotics in a real aquatic environment.


Subject(s)
Anti-Bacterial Agents , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...