Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Rep ; 34(5): 484-495, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28393162

ABSTRACT

Covering: 2000 to 2016On the molecular level humans sense food by a variety of specialized tissues which express sensory receptors to handle nutritive value. In general, this means the interplay of gustatory, olfactory, trigeminal and haptic sensation is translated into perception and leads, in terms of taste, to descriptions like sweet, bitter, salty, sour and umami. Further perceptions include astringent, cool, hot, prickle, lingering, kokumi and fatty to name predominant characterizations. It is still not fully understood how this plethora of impressions can be perceived by quite a limited number of receptors obviously being the initial compilers to judge palatability. However, since the discovery of mammalian taste receptors (TASRs) almost 30 years ago the use of taste receptors in cell-based screening campaigns is advancing in industrial approaches. The article will highlight the impacts and the limits of cell-based guided identification of taste modulators for food applications with an emphasis on sweet, bitter and savory taste as well as implications emerging from natural products.


Subject(s)
Biological Products , Taste Perception , Animals , Humans , Molecular Structure , Taste/physiology , Taste Buds/physiology
2.
Cell Death Differ ; 16(2): 187-94, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18974774

ABSTRACT

Homeodomain-interacting protein kinase 2 (HIPK2) is an emerging regulator of cell growth and apoptosis in various cell types, tissues and organisms. Previous work indicates that HIPK2 is a potential tumour suppressor and DNA damage-responsive kinase, which phosphorylation-dependently activates the apoptotic programme by engaging diverse downstream targets, including tumour suppressor p53 and the anti-apoptotic transcriptional corepressor C-terminal binding protein. The regulation of HIPK2, however, remained largely obscure. Recent studies show that HIPK2 activity is mainly controlled at the post-transcriptional level through targeted proteolysis. Caspase-dependent processing triggers HIPK2 hyperactivation, whereas the ubiquitin-proteasome system (UPS) keeps HIPK2 in check by targeting it for degradation. Both HIPK2 hyperactivation and HIPK2 degradation are under the control of transcription factor p53. Negative regulation of HIPK2 by the UPS is abolished in response to DNA damage, which facilitates HIPK2 stabilization and activation. Here we discuss these findings in the context of DNA damage signalling and tumour suppression.


Subject(s)
Carrier Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Caspases/metabolism , DNA Damage , Humans , Nuclear Proteins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...