Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 77(16): 1782-7, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21614753

ABSTRACT

Development of early stage atherosclerosis involves the activation of endothelial cells by oxidized low-density lipoprotein (oxLDL) with subsequent increases in endothelial permeability and expression of adhesion molecules favoring the adherence of monocytes to the endothelium. Cryptotanshinone (CTS), a major compound derived from the Chinese herb Salvia miltiorrhiza, is known for its protective effects against cardiovascular diseases. The aim of this study was to determine whether CTS could prevent the oxLDL-induced early atherosclerotic events. OxLDL (100 µg/mL) was used to increase endothelial permeability and induce monocyte-endothelial cell adhesion in human umbilical vein endothelial cells (HUVECs). Endothelial nitric oxide (NO) concentrations, a permeability-regulating molecule, and expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were measured. Results show that a) endothelial hyperpermeability was suppressed by 94 % (p < 0.005), b) monocyte adhesion by 105 % (p < 0.01), and c) ICAM-1 and VCAM-1 expressions by 90 % (p < 0.01) and 150 % (p < 0.005), respectively, when CTS was applied. In contrast, CTS increased NO levels by 129 % (p < 0.01) and was found to be noncytotoxic in the concentrations between 1-10 µM. These findings indicate that CTS suppresses an increase in endothelial permeability, likely due to the restoration of NO bioavailability in endothelial cells. They also indicate that CTS may attenuate monocyte adhesion to endothelial cells through the inhibition of adhesion molecules' expression. Thus, CTS may play an important role in the prevention of early or pre-lesional stage of atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Drugs, Chinese Herbal/pharmacology , Phenanthrenes/pharmacology , Salvia miltiorrhiza/chemistry , Atherosclerosis/chemically induced , Biological Availability , Cell Adhesion/drug effects , Cell Survival , Cells, Cultured , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Intercellular Adhesion Molecule-1/drug effects , Intercellular Adhesion Molecule-1/metabolism , Lipoproteins, LDL/toxicity , Monocytes/drug effects , Monocytes/physiology , Nitric Oxide/pharmacokinetics , Permeability/drug effects , Vascular Cell Adhesion Molecule-1/drug effects , Vascular Cell Adhesion Molecule-1/metabolism
2.
Eur J Pharmacol ; 538(1-3): 188-94, 2006 May 24.
Article in English | MEDLINE | ID: mdl-16650843

ABSTRACT

Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.


Subject(s)
Flavonoids/pharmacology , Inflammation Mediators/metabolism , Animals , Cell Line , Cell Survival/drug effects , Chalcones , Dinoprostone/biosynthesis , Dinoprostone/blood , Dose-Response Relationship, Drug , Flavonoids/chemistry , Humans , Inflammation Mediators/blood , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Lipoxygenase/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Nitric Oxide/biosynthesis , Reactive Oxygen Species/metabolism , Thromboxane B2/biosynthesis , Thromboxane B2/blood , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...