Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(35): 12033-12041, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36007249

ABSTRACT

With the ongoing development of conjugate vaccines battling infectious diseases, there is a need for novel carriers. Although tetanus toxoid and CRM197 belong to the traditional carrier proteins, outer-membrane vesicles (OMVs) are an excellent alternative: in addition to their size, OMVs have self-adjuvanting properties due to the presence of genetically detoxified lipopolysaccharide (LPS) and are therefore ideal as a vaccine component or antigen carrier. An essential aspect of their development for vaccine products is characterization of OMVs with respect to size and purity. We report on the development of a field-flow fractionation multiangle light-scattering (FFF-MALS) method for such characterization. Here, we introduced NIST-traceable particle-size standards and BSA as a model protein to verify the precision of the size and purity analysis of the OMVs. We executed a validation program according to the principles provided in the ICH Guidelines Q2 (R1) to assess the quality attributes of the results obtained by FFF-MALS analysis. All validation characteristics showed excellent results with coefficients of variation between 0.4 and 7.32%. Estimation of limits of detection for hydrodynamic radius and particle concentration revealed that as little as 1 µg OMV still yielded accurate results. With the validated method, we further characterized a full downstream purification process of our proprietary OMV. This was followed by the evaluation of other purified OMVs from different bacterial origin. Finally, functionalizing OMVs with N-γ-(maleimidobutyryl)oxysuccinimide-ester (GMBS), generating ready-to-conjugate OMVs, did not affect the structural integrity of the OMVs and as such, they could be evaluated with the validated FFF-MALS method.


Subject(s)
Fractionation, Field Flow , Lipopolysaccharides , Bacterial Outer Membrane Proteins/chemistry , Lipopolysaccharides/chemistry , Vaccines, Conjugate
2.
J Vis Exp ; (148)2019 06 20.
Article in English | MEDLINE | ID: mdl-31282880

ABSTRACT

Analytical size-exclusion chromatography (SEC), commonly used for the determination of the molecular weight of proteins and protein-protein complexes in solution, is a relative technique that relies on the elution volume of the analyte to estimate molecular weight. When the protein is not globular or undergoes non-ideal column interactions, the calibration curve based on protein standards is invalid, and the molecular weight determined from elution volume is incorrect. Multi-angle light scattering (MALS) is an absolute technique that determines the molecular weight of an analyte in solution from basic physical equations. The combination of SEC for separation with MALS for analysis constitutes a versatile, reliable means for characterizing solutions of one or more protein species including monomers, native oligomers or aggregates, and heterocomplexes. Since the measurement is performed at each elution volume, SEC-MALS can determine if an eluting peak is homogeneous or heterogeneous and distinguish between a fixed molecular weight distribution versus dynamic equilibrium. Analysis of modified proteins such as glycoproteins or lipoproteins, or conjugates such as detergent-solubilized membrane proteins, is also possible. Hence, SEC-MALS is a critical tool for the protein chemist who must confirm the biophysical properties and solution behavior of molecules produced for biological or biotechnological research. This protocol for SEC-MALS analyzes the molecular weight and size of pure protein monomers and aggregates. The data acquired serve as a foundation for further SEC-MALS analyses including those of complexes, glycoproteins and surfactant-bound membrane proteins.


Subject(s)
Chromatography, Gel/methods , Proteins/chemistry , Calibration , Dynamic Light Scattering , Light , Molecular Weight , Scattering, Radiation
3.
Methods Mol Biol ; 2025: 335-359, 2019.
Article in English | MEDLINE | ID: mdl-31267461

ABSTRACT

We present a review of high-throughput techniques for the characterization and quality control of proteins in the course of purification, evaluation, and formulation, based on static and dynamic light scattering. Multi-angle static light scattering (MALS) in combination with rapid, low-volume UHPLC size exclusion chromatography is effective in characterizing key biophysical properties, while dynamic light scattering (DLS) in high-throughput microwell-plate format provides large quantities of data in a short time to screen many conditions, excipients, cell lines, or candidate biotherapeutics.


Subject(s)
Antibodies, Monoclonal/metabolism , Dynamic Light Scattering , Animals , Chromatography, Gel , Humans
4.
J Vis Exp ; (146)2019 04 05.
Article in English | MEDLINE | ID: mdl-31009014

ABSTRACT

Ion-exchange chromatography with multi-angle light scattering (IEX-MALS) is a powerful method for protein separation and characterization. The combination of the high-specificity separation technique IEX with the accurate molar mass analysis achieved by MALS allows the characterization of heterogeneous protein samples, including mixtures of oligomeric forms or protein populations, even with very similar molar masses. Therefore, IEX-MALS provides an additional level of protein characterization and is complementary to the standard size-exclusion chromatography with multi-angle light scattering (SEC-MALS) technique. Here we describe a protocol for a basic IEX-MALS experiment and demonstrate this method on bovine serum albumin (BSA). IEX separates BSA to its oligomeric forms allowing a molar mass analysis by MALS of each individual form. Optimization of an IEX-MALS experiment is also presented and demonstrated on BSA, achieving excellent separation between BSA monomers and larger oligomers. IEX-MALS is a valuable technique for protein quality assessment since it provides both fine separation and molar mass determination of multiple protein species that exist in a sample.


Subject(s)
Chromatography, Ion Exchange/methods , Light , Scattering, Radiation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/isolation & purification , Animals , Cattle , Molecular Weight
5.
J Pharm Sci ; 105(8): 2310-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27364461

ABSTRACT

Analysis of weakly self-associating macromolecules at concentrations beyond a few g/L is challenging on account of the confounding effect of thermodynamic nonideality on the association signal. When the reversible association comprises only 1 or 2 oligomeric species in equilibrium with the monomer, the nonideality may be accounted for in a relatively rigorous manner, but if more association states are involved, the analysis becomes quite complex. We show that under reasonable assumptions, the nonideality in a composition-gradient static light scattering measurement may be accounted for in a simple fashion. The correction is applied to determining the stoichiometry and binding affinity of a protein previously characterized via sedimentation equilibrium and dynamic light scattering. The results of the new analysis are remarkably self-consistent and in line with the expectations for the form of self-association predicted previously from analysis of the surface residuals, establishing composition-gradient multi-angle static light scattering with nonideality corrections as a critical technology for characterizing associative interactions in concentrated solutions.


Subject(s)
Biopharmaceutics/methods , Light , Models, Chemical , Multiprotein Complexes/chemistry , Recombinant Fusion Proteins/chemistry , Scattering, Radiation , Protein Binding , Protein Multimerization , Sodium Chloride/chemistry , Solutions , Thermodynamics
6.
Biophys Rev ; 5(2): 147-158, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23646069

ABSTRACT

While light scattering has long been applied to the analysis of biomolecular interactions, recent advances have extended the practical use of light scattering techniques to cover a rather broad range of phenomena. In this paper I review essential light scattering theory as applied to specific interactions under thermodynamically ideal conditions and present examples showing how light scattering elucidates the dynamic equilibrium and kinetic behavior of proteins and other biomacromolecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...