Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 252: 126477, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32222523

ABSTRACT

Digestate treatment techniques have recently been proposed as a strategy to increase the ultimate biogas yield from dairy manure and to improve the digestate quality as an organic fertilizer. These studies however rarely take the trace elements (TE) and nutrient partitioning into account. This study focusses on ozone treatment (5-40 g O3 kg-1 Total Solids (TS)) as a digestate treatment technique to control the concentration of TE and nutrients in the liquid phase of the digestate. Controlling the TE and nutrient concentrations in the liquid and solid digestate can improve the agronomic value of dairy manure digestate. The ozone concentration of the gas stream entering reactor was 48.53 g O3/Nm³ or 3.4% w/w O3 in O2-gas. The experiments were repeated using pure oxygen gas to investigate its influence. The results from ozonation and oxygenation of the dairy manure digestates revealed that O3 treatment up to 40 g O3 kg-1 TS did not have a more pronounced effect on the biochemical parameters compared to supplementation of pure O2. Ozonation of the digestate and the supernatant showed that the TE concentration in the liquid phase followed a parabolic profile. The observed initial increase in this parabolic profile was explained by the release of TE from the organic matter to the supernatant causing an increase in TE concentration, followed by a decrease due to precipitation of TE as hydroxides and sulfides, due to the increasing pH and sulphur concentrations.


Subject(s)
Manure , Micronutrients/chemistry , Ozone/chemistry , Trace Elements/chemistry , Anaerobiosis , Animals , Biofuels , Fertilizers
2.
Bioresour Technol ; 268: 568-576, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30125860

ABSTRACT

Recently, digestate disintegration gained interest as an alternative strategy to feedstock pretreatment for anaerobic digestion. This study evaluated the effect of three different digestate disintegration methods (hydrogen peroxidation, ozone treatment and ultrasound) on manure digestate, potato waste digestate and mixed organic waste digestate. Lab-scale anaerobic digestion experiments were carried out by adding disintegrated digestate to the related substrate and inoculum with simulated recycle ratios of 0.2 and 0.5. Ultrasound disintegration of potato waste digestate yields 22.5% increase in biogas production. An increase in biogas production was linked to the treated digestate amount and the treatment dosage. First order model was used to investigate the effect of digestate disintegration on the first order reaction rate constant (k). The decrease in k and increase in biogas production were linearly correlated. This correlation was explained by the increased bioavailability of the organic matter and possible negative effects of digestate disintegration on the microorganisms.


Subject(s)
Biofuels , Manure , Recycling , Anaerobiosis , Hydrogen
3.
J Environ Manage ; 219: 95-102, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29734015

ABSTRACT

In this study, the dilute acid hydrolysis of lignocellulosic bamboo (Phyllostachys aureosulcata) particles to levulinic acid in a hydrothermal synthesis reactor is reported. The aim of the study was to optimize the reaction conditions for maximum levulinic acid production in terms of reaction time (t), reaction temperature (T) and HCl concentration (cHCl) via Response Surface Methodology (RSM). A maximum levulinic acid yield of 9.46 w% was predicted at the following reaction conditions: t of 3 h, T of 160 °C and cHCl of 0.37 M. A maximal experimental yield of levulinic acid of 10.13 w% was observed, which in respect to the cellulose fraction of the bamboo particles corresponds to 34.60 w% or 48.05 mol%. Furfural, which is formed by the hemicellulose fraction of bamboo, has not been observed within the boundaries of the RSM model, since it is already degraded under the given reaction conditions. The conversion of levulinic acid and furfural occurred more or less simultaneously, however, furfural was more vulnerable to degradation reactions at the given process conditions. Therefore, if both fractions (cellulose + hemicellulose) are required to be valorized, further optimization is required. However, the global results of this study provide insight in the potential of lignocellulosic bamboo as an alternative platform to fossil sources.


Subject(s)
Bioreactors , Levulinic Acids , Poaceae , Cellulose , Furaldehyde , Hydrolysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...