Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Biosci Bioeng ; 119(6): 657-60, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25575972

ABSTRACT

This investigation used in vivo and in vitro tools to study pharmacokinetics and glycosylation of two monomeric antibodies produced either transiently by HEK293 cells or stably by Chinese hamster ovary cells, and demonstrated that higher in vivo clearance of human embryonic kidney antibody was due to higher glycosylation, thus higher mannose receptor mediated uptake.


Subject(s)
Antibodies/chemistry , Antibodies/metabolism , Glycosylation , Mannans/metabolism , Animals , Antibodies/genetics , Antibody Formation , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Kinetics , Lectins, C-Type/metabolism , Mannans/pharmacokinetics , Mannose Receptor , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism
2.
J Biol Chem ; 288(23): 16529-16537, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23615911

ABSTRACT

Human IgG is a bivalent molecule that has two identical Fab domains connected by a dimeric Fc domain. For therapeutic purposes, however, the bivalency of IgG and Fc fusion proteins could cause undesired properties. We therefore engineered the conversion of the natural dimeric Fc domain to a highly soluble monomer by introducing two Asn-linked glycans onto the hydrophobic C(H)3-C(H)3 dimer interface. The monomeric Fc (monoFc) maintained the binding affinity for neonatal Fc receptor (FcRn) in a pH-dependent manner. We solved the crystal structure of monoFc, which explains how the carbohydrates can stabilize the protein surface and provides the rationale for molecular recognition between monoFc and FcRn. The monoFc prolonged the in vivo half-life of an antibody Fab domain, and a tandem repeat of the monoFc further prolonged the half-life. This monoFc modality can be used to improve the pharmacokinetics of monomeric therapeutic proteins with an option to modulate the degree of half-life extension.


Subject(s)
Immunoglobulin Fc Fragments , Protein Engineering , Animals , Cell Line , Glycosylation , Half-Life , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/pharmacology , Male , Mice , Mice, Inbred BALB C , Protein Binding , Receptors, Fc/genetics , Receptors, Fc/metabolism
3.
J Biol Chem ; 281(47): 36378-90, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17005555

ABSTRACT

Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.


Subject(s)
Central Nervous System/injuries , Central Nervous System/pathology , Membrane Proteins/chemistry , Nerve Tissue Proteins/chemistry , Animals , Axons/metabolism , Biophysics/methods , CHO Cells , Cell Differentiation , Cell Membrane/metabolism , Cricetinae , Crystallography, X-Ray , Humans , Leucine/chemistry , Membrane Proteins/metabolism , Myelin Sheath/chemistry , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Protein Structure, Tertiary
4.
Peptides ; 27(7): 1877-85, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16574278

ABSTRACT

Beta-secretase 1 (BACE1) is an aspartic protease believed to play a critical role in Alzheimer's disease. Inhibitors of this enzyme have been designed by incorporating the non-cleavable hydroxyethylene and statine isosteres into peptides corresponding to BACE1 substrate sequences. We sought to develop new methods to quickly characterize and optimize inhibitors based on the statine core. Minimal sequence requirements for binding were first established using both crystallography and peptide spot synthesis. These shortened peptide inhibitors were then optimized by using spot synthesis to perform iterative cycles of substitution and deletion. The present study resulted in the identification of novel "bis-statine" inhibitors shown by crystallography to have a unique binding mode. Our results demonstrate the application of peptide spot synthesis as an effective method for enhancing peptidomimetic drug discovery.


Subject(s)
Amino Acids/chemistry , Biochemistry/methods , Endopeptidases/chemistry , Peptides/chemistry , Protease Inhibitors/pharmacology , Amino Acid Sequence , Amyloid Precursor Protein Secretases , Animals , Biotinylation , CHO Cells , Cricetinae , Crystallization , Crystallography , Models, Molecular , Molecular Sequence Data , Protein Conformation
5.
J Med Chem ; 48(25): 7960-9, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16335920

ABSTRACT

Acyl carrier protein synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheinyl group from the coenzyme A to a serine residue in acyl carrier protein (ACP), thereby activating ACP, an important step in cell wall biosynthesis. The structure-based design of novel anthranilic acid inhibitors of AcpS, a potential antibacterial target, is presented. An initial high-throughput screening lead and numerous analogues were modeled into the available AcpS X-ray structure, opportunities for synthetic modification were identified, and an iterative process of synthetic modification, X-ray complex structure determination with AcpS, biological testing, and further modeling ultimately led to potent inhibitors of the enzyme. Four X-ray complex structures of representative anthranilic acid ligands bound to AcpS are described in detail.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Models, Molecular , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)/chemistry , ortho-Aminobenzoates/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Drug Design , Drug Resistance, Bacterial , Gram-Positive Bacteria/drug effects , Ligands , Microbial Sensitivity Tests , Molecular Structure , Quantitative Structure-Activity Relationship , Stereoisomerism , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology
6.
J Med Chem ; 48(13): 4346-57, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-15974587

ABSTRACT

A search for noncarbohydrate sLe(x) mimics led to the development of quinic acid derivatives as selectin inhibitors. At Wyeth we solved the first cocrystal structure of a small molecule, quinic acid, with E-selectin. In the cocomplex two hydroxyls of quinic acid mimic the calcium-bound fucose of the tetrasaccharide sLe(x). The X-ray structure, together with structure based computational methods, was used to design quinic acid based libraries that were synthesized and evaluated for their ability to block the interaction of sLex with P-selectin. A large number of analogues were prepared using solution-phase parallel synthesis. Selected compounds showed decrease in leukocyte rolling in the IVM mouse model. Compound 2 inhibited neutrophil influx in the murine TIP model and demonstrated good plasma exposure.


Subject(s)
E-Selectin/metabolism , Oligosaccharides/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Animals , Binding Sites , Crystallography, X-Ray , Drug Design , Fucose , Jugular Veins/drug effects , Jugular Veins/physiology , Kinetics , Lewis Blood Group Antigens , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Molecular Conformation , Molecular Structure , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/physiology , Oligosaccharides/chemical synthesis , Oligosaccharides/pharmacology , Rats , Rats, Sprague-Dawley , Sialyl Lewis X Antigen , Surface Plasmon Resonance
7.
Structure ; 12(12): 2197-207, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15576033

ABSTRACT

We present X-ray crystallographic and molecular modeling studies of estrogen receptors-alpha and -beta complexed with the estrogen receptor-beta-selective phytoestrogen genistein, and coactivator-derived NR box peptides containing an LXXLL motif. We demonstrate that the ligand binding mode is essentially identical when genistein is bound to both isoforms, despite the considerably weaker affinity of this ligand for estrogen receptor-alpha. In addition, we examine subtle differences between binding site residues, providing an explanation for why genistein is modestly selective for the beta isoform. To this end, we also present the results of quantum chemical studies and thermodynamic arguments that yield insight to the nature of the interactions leading to estrogen receptor-beta selectivity. The importance of our analysis to structure-based drug design is discussed.


Subject(s)
Estrogen Receptor beta/metabolism , Genistein/metabolism , Computer Simulation , Crystallography, X-Ray , Estrogen Receptor beta/chemistry , Genistein/chemistry , Humans , Models, Molecular , Protein Structure, Tertiary
8.
J Am Chem Soc ; 126(46): 15106-19, 2004 Nov 24.
Article in English | MEDLINE | ID: mdl-15548008

ABSTRACT

We present the structure-based optimization of a series of estrogen receptor-beta (ERbeta) selective ligands. X-ray cocrystal structures of these ligands complexed to both ERalpha and ERbeta are described. We also discuss how molecular modeling was used to take advantage of subtle differences between the two binding cavities in order to optimize selectivity for ERbeta over ERalpha. Quantum chemical calculations are utilized to gain insight into the mechanism of selectivity enhancement. Despite only two relatively conservative residue substitutions in the ligand binding pocket, the most selective compounds have greater than 100-fold selectivity for ERbeta relative to ERalpha when measured using a competitive radioligand binding assay.


Subject(s)
Estrogen Receptor beta/chemistry , Estrogen Receptor beta/metabolism , Amino Acid Sequence , Benzofurans/chemistry , Benzofurans/metabolism , Benzoxazoles/chemistry , Benzoxazoles/metabolism , Binding Sites , Binding, Competitive , Crystallography, X-Ray , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/metabolism , Humans , Ligands , Male , Models, Molecular , Molecular Sequence Data , Protein Conformation , Quantum Theory , Radioligand Assay , Structure-Activity Relationship , Substrate Specificity
9.
J Biol Chem ; 279(48): 50401-9, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15364937

ABSTRACT

A member of the novel protein kinase C (PKC) subfamily, PKC, is an essential component of the T cell synapse and is required for optimal T cell activation and interleukin-2 production. Selective involvement of PKC in TCR signaling makes this enzyme an attractive therapeutic target in T cell-mediated disease processes. In this report we describe the crystal structure of the catalytic domain of PKC at 2.0-A resolution. Human recombinant PKC kinase domain was expressed in bacteria as catalytically active phosphorylated enzyme and co-crystallized with its subnanomolar, ATP site inhibitor staurosporine. The structure follows the classic bilobal kinase fold and shows the enzyme in its active conformation and phosphorylated state. Inhibitory interactions between conserved features of staurosporine and the ATP-binding cleft are accompanied by closing of the glycine-rich loop, which also maintains an inhibitory arrangement by blocking the phosphate recognition subsite. The two major phosphorylation sites, Thr-538 in the activation loop and Ser-695 in the hydrophobic motif, are both occupied in the structure, playing key roles in stabilizing active conformation of the enzyme and indicative of PKC autocatalytic phosphorylation and activation during bacterial expression. The PKC-staurosporine complex represents the first kinase domain crystal structure of any PKC isotypes to be determined and as such should provide valuable insight into PKC specificity and into rational drug design strategies for PKC selective leads.


Subject(s)
Isoenzymes/chemistry , Protein Kinase C/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , Molecular Sequence Data , Peptide Fragments/metabolism , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Protein Kinase C-theta , Protein Structure, Tertiary , Sequence Alignment , Staurosporine/metabolism , Substrate Specificity
10.
J Biol Chem ; 279(22): 23327-34, 2004 May 28.
Article in English | MEDLINE | ID: mdl-15039442

ABSTRACT

The adhesion of platelets to the subendothelium of blood vessels at sites of vascular injury under high shear conditions is mediated by a direct interaction between the platelet receptor glycoprotein Ibalpha (GpIbalpha) and the A1 domain of the von Willebrand factor (VWF). Here we report the 2.6-A crystal structure of a complex comprised of the extracellular domain of GpIbalpha and the wild-type A1 domain of VWF. A direct comparison of this structure to a GpIbalpha-A1 complex containing "gain-of-function" mutations, A1-R543Q and GpIbalpha-M239V, reveals specific structural differences between these complexes at sites near the two GpIbalpha-A1 binding interfaces. At the smaller interface, differences in interaction show that the alpha1-beta2 loop of A1 serves as a conformational switch, alternating between an open alpha1-beta2 isomer that allows faster dissociation of GpIbalpha-A1, as observed in the wild-type complex, and an extended isomer that favors tight association as seen in the complex containing A1 with a type 2B von Willebrand Disease (VWD) mutation associated with spontaneous binding to GpIbalpha. At the larger interface, differences in interaction associated with the GpIbalpha-M239V platelet-type VWD mutation are minor and localized but feature discrete gamma-turn conformers at the loop end of the beta-hairpin structure. The beta-hairpin, stabilized by a strong classic gamma-turn as seen in the mutant complex, relates to the increased affinity of A1 binding, and the beta-hairpin with a weak inverse gamma-turn observed in the wild-type complex corresponds to the lower affinity state of GpIbalpha. These findings provide important details that add to our understanding of how both type 2B and platelet-type VWD mutations affect GpIbalpha-A1 binding affinity.


Subject(s)
Platelet Glycoprotein GPIb-IX Complex/chemistry , von Willebrand Factor/chemistry , Binding Sites/genetics , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , von Willebrand Diseases/genetics , von Willebrand Factor/genetics
11.
Science ; 301(5630): 222-6, 2003 Jul 11.
Article in English | MEDLINE | ID: mdl-12855811

ABSTRACT

Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.


Subject(s)
Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/chemistry , Platelet Glycoprotein GPIb-IX Complex/metabolism , Thrombin/chemistry , Thrombin/metabolism , Binding Sites , Blood Platelets/chemistry , Blood Platelets/physiology , Crystallization , Crystallography, X-Ray , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Platelet Adhesiveness , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
12.
Structure ; 11(6): 627-36, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12791252

ABSTRACT

MAP KAP kinase 2 (MK2), a Ser/Thr kinase, plays a crucial role in the inflammatory process. We have determined the crystal structures of a catalytically active C-terminal deletion form of human MK2, residues 41-364, in complex with staurosporine at 2.7 A and with ADP at 3.2 A, revealing overall structural similarity with other Ser/Thr kinases. Kinetic analysis reveals that the K(m) for ATP is very similar for MK2 41-364 and p38-activated MK2 41-400. Conversely, the catalytic rate and binding for peptide substrate are dramatically reduced in MK2 41-364. However, phosphorylation of MK2 41-364 by p38 restores the V(max) and K(m) for peptide substrate to values comparable to those seen in p38-activated MK2 41-400, suggesting a mechanism for regulation of enzyme activity.


Subject(s)
Adenosine Diphosphate/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Staurosporine/metabolism , Amino Acid Sequence , Enzyme Activation , Humans , Intracellular Signaling Peptides and Proteins , Macromolecular Substances , Mitogen-Activated Protein Kinases/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Sequence Alignment , p38 Mitogen-Activated Protein Kinases
13.
J Biol Chem ; 277(5): 3698-707, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11704676

ABSTRACT

The nadD gene, encoding the enzyme nicotinic acid mononucleotide (NaMN) adenylyltransferase (AT), is essential for the synthesis of NAD and subsequent viability of the cell. The nadD gene in Bacillus subtilis (yqeJ) was identified by sequence homology with other bacterial nadD genes and by biochemical characterization of the gene product. NaMN AT catalyzes the reversible adenylation of both NaMN and the nicotinamide mononucleotide (NMN) but shows specificity for the nicotinate. In contrast to other known NMN ATs, biophysical characterizations reveal it to be a dimer. The NaMN AT crystal structure was determined for both the apo enzyme and product-bound form, to 2.1 and 3.2 A, respectively. The structures reveal a "functional" dimer conserved in both crystal forms and a monomer fold common to members of the nucleotidyl-transferase alpha/beta phosphodiesterase superfamily. A structural comparison with family members suggests a new conserved motif (SXXXX(R/K)) at the N terminus of an alpha-helix, which is not part of the shared fold. Interactions of the nicotinic acid with backbone atoms indicate the structural basis for specificity.


Subject(s)
Bacillus subtilis/enzymology , Nicotinamide-Nucleotide Adenylyltransferase , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , Conserved Sequence , Crystallography, X-Ray , Factor Xa/metabolism , Kinetics , Models, Molecular , Molecular Sequence Data , Molecular Weight , Nucleotidyltransferases/isolation & purification , Peptide Fragments/chemistry , Protein Conformation , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...