Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(35): 40005-40013, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35984352

ABSTRACT

The UiO-66-NH2 aerogel has been designed to remove As(III) and As(V) in the full pH range with a long lifetime. The efficiency of the aerogel for trace removal from river water samples at the sub-ppb level has been demonstrated. The feasibility for practical uses has been evaluated by breakthrough experiments operated at a liquid hourly space velocity (LHSV) of 38 h-1 using a real water sample with a significant capacity of 284 mg g-1. The UiO-66-NH2 aerogel provides a lifetime of over 600 min, which is one of the highest lifetimes among the reported adsorbents for arsenic decontamination.

2.
Inorg Chem ; 61(29): 11342-11348, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35822536

ABSTRACT

Zirconium clusters of UiO-66 have been hydroxylated with NaOH to generate strong binding sites for As(III) species in wastewater treatment. Hydroxylated UiO-66 provides high adsorption capacity over a wide range of pH from 1 to 10 with a maximum uptake of 204 mg g-1, which is significantly enhanced compared to those of pristine UiO-66, acid-modulated UiO-66, and other adsorbents for use in a wide pH range of treatment processes. The local structure of hydroxylated sites and As(III) adsorption mechanism are determined by extended X-ray absorption fine structure combined with density functional theory calculations.

3.
Angew Chem Int Ed Engl ; 61(18): e202117608, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35139250

ABSTRACT

Most metal-organic frameworks (MOFs) lack charge mobility, which is crucial for realizing their use in optoelectronic applications. This work proposes the design of a MOF using triarylamine-based ligands (Zr-NBP) as the lone pair electron spacer to enhance the hole mobility in the MOF while maintaining its luminescent properties. Zr-NBP has strong fluorescence with a good hole mobility of 1.05×10-6  cm2 V-1 s-1 , which is comparable to organic materials used in optoelectronic devices. We also employed a Zr-NBP nanofilm in the pure phase as both a non-doped emissive layer and a hole-transporting layer within organic light-emitting diodes (OLEDs). The obtained OLED device produced a bright green light with a low turn-on voltage of 3.9 V. This work presents an advance in developing the electronic properties of MOFs by modifying the chemical properties of its building blocks, and will likely inspire further design of MOF materials as active layers in optoelectronic devices.

4.
ACS Appl Mater Interfaces ; 13(26): 30844-30852, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34165275

ABSTRACT

Zr-based UiO-66 metal-organic framework (MOF) is one of the most studied MOFs with a wide range of potential applications. While UiO-66 is typically synthesized as a microcrystalline solid, we employ a particle downsizing strategy to synthesize UiO-66 as fluid gel with unique rheological properties, which allows the solution-based processing as sub-100 nm films and enhances the electrical conductivity of its pristine structure. Film thicknesses ranging from 40 to 150 nm could be achieved by controlling the spin-coating parameters. The generality of the method is also demonstrated for other Zr-based MOFs including MOF-801 and MOF-808. The impact of particle size and film thickness at the nanoscale on electrical properties of UiO-66 is shown to realize new features that are distinct from those of the bulk powder phase. An electrical insulator UiO-66 shows a significant increase in the electrical conductivity (10-5 S cm-1 compared to 10-7 S cm-1 in the bulk powder phase) when the 10 nm particles are distributed on the substrate with a thickness less than 100 nm. The findings establish a new route for processing of MOF materials as thin films with fine-tuned thickness and offer a new perspective for transport properties of Zr-based MOFs without structural modification.

5.
Small ; 17(22): e2006541, 2021 06.
Article in English | MEDLINE | ID: mdl-33733619

ABSTRACT

5-hydroxylmethylfurfural (HMF) is a bio-based chemical that can be prepared from natural abundant glucose by using combined Brønsted-Lewis acid catalysts. In this work, Al3+ catalytic site has been grafted on Brønsted metal-organic frameworks (MOFs) to enhance Brønsted-Lewis acidity of MOF catalysts for a one-pot glucose-to-HMF transformation. The uniform porous structure of zirconium-based MOFs allows the optimization of both acid strength and density of acid sites in MOF-based catalysts by incorporating the desired amount of Al3+ catalytic sites at the organic linker. Al3+ sites generated via a post-synthetic modification act as Lewis acid sites located adjacent to the Brønsted sulfonated sites of MOF structure. The local structure of the Al3+ sites incorporated in MOFs has been elucidated by X-ray absorption near-edge structure (XANES) combined with density functional theory (DFT) calculations. The cooperative effect from Brønsted and Lewis acids located in close proximity and the high acid density is demonstrated as an important factor to achieve high yield of HMF.


Subject(s)
Metal-Organic Frameworks , Acids , Catalysis , Glucose , Zirconium
6.
Chemistry ; 26(72): 17399-17404, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-32816364

ABSTRACT

Deposition of redox-active metal-organic frameworks (MOFs) as thin films on conductive substrates is of great importance to improve their electrochemical performance and durability. In this work, a series of metalloporphyrinic MOF crystals was successfully deposited as thin films on carbon fiber paper (CFP) substrates, which is an alternative to rigid glass substrates. The specific dimensions of the obtained films could be adjusted easily by simple cutting. Metalloporphyrinic MOFs on CFP with different active metal species have been employed for electrochemical conversion of the carcinogenic nitrite into the less toxic nitrate. The MOFs on CFP exhibit remarkable improvement in terms of the electrocatalytic performance and reusability compared with the electrodes prepared from MOF powder. The contribution from metal species of the porphyrin units and reaction mechanisms was elucidated based on the findings from X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption near edge structure (XANES) measured during the electrochemical reaction. By integrating the redox-active property of metalloporphyrinic MOFs and high conductivity of CFP, MOF thin films on CFP provided a significant improvement of electrocatalytic performance to detoxify the carcinogenic nitrite with good stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...