Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(6): 060504, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822089

ABSTRACT

We present two quantum algorithms based on evolution randomization, a simple variant of adiabatic quantum computing, to prepare a quantum state |x⟩ that is proportional to the solution of the system of linear equations Ax[over →]=b[over →]. The time complexities of our algorithms are O(κ^{2}log(κ)/ε) and O(κlog(κ)/ε), where κ is the condition number of A and ε is the precision. Both algorithms are constructed using families of Hamiltonians that are linear combinations of products of A, the projector onto the initial state |b⟩, and single-qubit Pauli operators. The algorithms are conceptually simple and easy to implement. They are not obtained from equivalences between the gate model and adiabatic quantum computing. They do not use phase estimation or variable-time amplitude amplification, and do not require large ancillary systems. We discuss a gate-based implementation via Hamiltonian simulation and prove that our second algorithm is almost optimal in terms of κ. Like previous methods, our techniques yield an exponential quantum speed-up under some assumptions. Our results emphasize the role of Hamiltonian-based models of quantum computing for the discovery of important algorithms.

2.
Phys Rev Lett ; 114(9): 090502, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793789

ABSTRACT

We describe a simple, efficient method for simulating Hamiltonian dynamics on a quantum computer by approximating the truncated Taylor series of the evolution operator. Our method can simulate the time evolution of a wide variety of physical systems. As in another recent algorithm, the cost of our method depends only logarithmically on the inverse of the desired precision, which is optimal. However, we simplify the algorithm and its analysis by using a method for implementing linear combinations of unitary operations together with a robust form of oblivious amplitude amplification.

3.
Phys Rev Lett ; 109(5): 050501, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-23006152

ABSTRACT

We study the glued-trees problem from A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. Spielman, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (ACM, San Diego, CA, 2003), p. 59. in the adiabatic model of quantum computing and provide an annealing schedule to solve an oracular problem exponentially faster than classically possible. The Hamiltonians involved in the quantum annealing do not suffer from the so-called sign problem. Unlike the typical scenario, our schedule is efficient even though the minimum energy gap of the Hamiltonians is exponentially small in the problem size. We discuss generalizations based on initial-state randomization to avoid some slowdowns in adiabatic quantum computing due to small gaps.

4.
Phys Rev Lett ; 109(22): 227203, 2012 Nov 30.
Article in English | MEDLINE | ID: mdl-23368157

ABSTRACT

We derive the exact ground space of a family of spin-1/2 Heisenberg chains with uniaxial exchange anisotropy (XXZ) and interactions between nearest and next-nearest-neighbor spins. The Hamiltonian family, H(eff)(Q), is parametrized by a single variable Q. By using a generalized Jordan-Wigner transformation that maps spins into anyons, we show that the exact ground states of H(eff)(Q) correspond to a condensation of anyons with a statistical phase φ=-4Q. We also provide matrix-product state representations of some ground states that allow for the efficient computation of spin-spin correlation functions.

5.
Phys Rev Lett ; 106(17): 170501, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21635023

ABSTRACT

We consider the manifold of all quantum many-body states that can be generated by arbitrary time-dependent local Hamiltonians in a time that scales polynomially in the system size, and show that it occupies an exponentially small volume in Hilbert space. This implies that the overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time. We establish this fact by making use of a time-dependent generalization of the Suzuki-Trotter expansion, followed by a well-known counting argument. This also demonstrates that a computational model based on arbitrarily rapidly changing Hamiltonians is no more powerful than the standard quantum circuit model.

6.
Nat Commun ; 1: 149, 2010.
Article in English | MEDLINE | ID: mdl-21266999

ABSTRACT

Quantum state tomography--deducing quantum states from measured data--is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes unfeasible because the number of measurements and the amount of computation required to process them grows exponentially in the system size. Here, we present two tomography schemes that scale much more favourably than direct tomography with system size. One of them requires unitary operations on a constant number of subsystems, whereas the other requires only local measurements together with more elaborate post-processing. Both rely only on a linear number of experimental operations and post-processing that is polynomial in the system size. These schemes can be applied to a wide range of quantum states, in particular those that are well approximated by matrix product states. The accuracy of the reconstructed states can be rigorously certified without any a priori assumptions.

7.
Phys Rev Lett ; 97(19): 190501, 2006 Nov 10.
Article in English | MEDLINE | ID: mdl-17155604

ABSTRACT

One way to specify a model of quantum computing is to give a set of control Hamiltonians acting on a quantum state space whose initial state and final measurement are specified in terms of the Hamiltonians. We formalize such models and show that they can be simulated classically in a time polynomial in the dimension of the Lie algebra generated by the Hamiltonians and logarithmic in the dimension of the state space. This leads to a definition of Lie-algebraic "generalized mean-field Hamiltonians." We show that they are efficiently (exactly) solvable. Our results generalize the known weakness of fermionic linear optics computation and give conditions on control needed to exploit the full power of quantum computing.

8.
Phys Rev Lett ; 92(10): 107902, 2004 Mar 12.
Article in English | MEDLINE | ID: mdl-15089245

ABSTRACT

We present a generalization of entanglement based on the idea that entanglement is relative to a distinguished subspace of observables rather than a distinguished subsystem decomposition. A pure quantum state is entangled relative to such a subspace if its expectations are a proper mixture of those of other states. Many information-theoretic aspects of entanglement can be extended to this observable-based setting, suggesting new ways of measuring and classifying multipartite entanglement. By going beyond the distinguishable-subsystem framework, generalized entanglement also provides novel tools for probing quantum correlations in interacting many-body systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...