Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37509752

ABSTRACT

Plant oils contain a high content of unsaturated fatty acids. Studies of food products have revealed a considerable disproportion in the ratio of ω6 to ω3. This article presents information on the healthful qualities of eight new oil blends that contain a beneficial proportion of ω6 to ω3 fatty acids (5:1), as well as their degradation during heating at 170 and 200 °C. The fatty acid profile was analyzed by gas chromatography (GC), content of polar compounds and polymers of triacylglycerols by liquid chromatography (LC), water content was measured by the Karl Fischer method, and oxidative stability was measured by differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance (LF NMR) methods. The results showed that during heating, the polar fraction content increased in samples heated at both analyzed temperatures compared to unheated oils. This was mainly due to the polymerization of triacylglycerols forming dimers. In some samples that were heated, particularly those heated to 200 °C, trimers were detected, however, even with the changes that were observed, the polar fraction content of the blends did not go beyond the limit. Despite the high content of unsaturated fatty acids, the analyzed blends of oils are characterized by high oxidative stability, confirmed by thermoanalytical and nuclear magnetic resonance methods. The high nutritional value as well as the oxidative stability of the developed oil blends allow them to be used in the production of food, in particular products that ensure an adequate supply of ω3 fatty acids.

2.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36798052

ABSTRACT

Prolyl oligopeptidase (POP) is a conserved serine protease belonging to proline-specific peptidases. It has both enzymatic and non-enzymatic activity and is involved in numerous biological processes in the human body, playing a role in e.g., cellular growth and differentiation, inflammation, as well as the development of some neurodegenerative and neuropsychiatric disorders. This article describes the physiological and pathological aspects of POP activity and the state-of-art of its peptidic inhibitors originating from food proteins, with a particular focus on their potential as cognition-enhancing agents. Although some milk, meat, fish, and plant protein-derived peptides have the potential to be applied as natural, procognitive nutraceuticals, their effectiveness requires further evaluation, especially in clinical trials. We demonstrated that the important features of the most promising POP-inhibiting peptides are very short sequence, high content of hydrophobic amino acids, and usually the presence of proline residue.

3.
Curr Pharm Des ; 28(10): 841-851, 2022.
Article in English | MEDLINE | ID: mdl-35034588

ABSTRACT

BACKGROUND: Keratin is among the most abundant structural proteins of animal origin, however it remains broadly underutilized. OBJECTIVE: Bioinformatic investigation was performed to evaluate selected keratins originating from mass-produced waste products, i.e., chicken feathers and pig hair, as potential sources of bioactive peptides. METHODS: Pepsin, trypsin, chymotrypsin, papain, and subtilisin were used for in silico keratinolysis with the use of "Enzyme(s) action" and fragmentomic analysis of theoretical products was performed using "Profiles of potential biological activity" in BIOPEP-UWM database of bioactive peptides. Bioactivity probability calculation and toxicity prediction of the peptides obtained were estimated using PeptideRanker and ToxinPred tools, respectively. RESULTS: Our results showed that the keratins are a potential source of a variety of biopeptides, including dipeptidyl peptidase IV, angiotensin converting enzyme, prolyl endopeptidase inhibitory and antioxidative. Papain and subtilisin were found to be the most appropriate enzymes for keratin hydrolysis. This study presents possible structures of keratin-derived bioactive peptides that have not been previously described. CONCLUSION: Our data suggest additional in vitro and in vivo studies to verify theoretical predictions and further investigate the possibility of using keratin-rich waste as a source of peptide nutraceuticals.


Subject(s)
Feathers , Keratins, Hair-Specific , Animals , Chickens , Feathers/chemistry , Keratins, Hair-Specific/analysis , Papain/analysis , Peptides/chemistry , Subtilisins/metabolism , Swine
4.
Environ Sci Pollut Res Int ; 29(16): 24145-24154, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34822081

ABSTRACT

Feathers, burdensome waste from the poultry industry, can be a cheap source of keratin, a protein with excellent physicochemical, biological, and mechanical properties. Acid and alkaline hydrolyses are usually adopted for isolation of keratin from its natural resources. This study aimed at assessing the statistically significant effect of input variables in the alkaline hydrolysis of keratin from chicken feathers on the process yield and on the molecular weight of peptides obtained. The effect of the volume ratio of 1M NaOH to the feathers' mass, the hydrolysis time, and the shaking speed of the reaction mixture on the process yield were analyzed. The use of statistical analysis at the design step of experiment allowed reducing the trial number from 27 to 9. Among the input variables analyzed, only the volume ratio of 1M NaOH to the feathers' mass had a significant effect on the process yield, while none of them significantly affected the molecular weight of the peptides obtained. All hydrolysates were dominated by two peptides' fractions, with molecular weights of ca. 130 and 250 kDa, and mixture of many peptides of weight close to 10 kDa and smaller. Alkaline hydrolysis of feather keratin yielded protein hydrolysates soluble over a wide pH range.


Subject(s)
Feathers , Keratins , Animals , Chickens , Feathers/chemistry , Hydrolysis , Poultry , Protein Hydrolysates/analysis
5.
Carbohydr Polym ; 266: 118153, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34044958

ABSTRACT

Bacterial nanocellulose (BNC) is a natural biomaterial with a wide range of medical applications. However, it cannot be used as a biological implant of the circulatory system without checking whether it is biodegradable under human plasma conditions. This work aimed to investigate the BNC biodegradation by selected pathogens under conditions simulating human plasma. The BNC was incubated in simulated biological fluids with or without Staphylococcus aureus, Candida albicans and Aspergillus fumigatus, and its physicochemical properties were studied. The results showed that the incubation of BNC in simulated body fluid with A. fumigatus contributes more to its degradation than that under other conditions tested. The rearrangement of the hydrogen-bond network in this case resulted in a more compact structure, with an increased crystallinity index, reduced thermal stability and looser cross-linking. Therefore, although BNC shows great potential as a cardiovascular implant material, before use for this purpose its biodegradability should be limited.


Subject(s)
Biocompatible Materials/metabolism , Cellulose/metabolism , Membranes, Artificial , Aspergillus fumigatus/metabolism , Biocompatible Materials/chemistry , Candida albicans/metabolism , Cellulose/chemistry , Hydrogen Bonding , Materials Testing , Nanostructures/chemistry , Staphylococcus aureus/metabolism , Temperature
6.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805875

ABSTRACT

This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking-one recommended for the meat and the other proposed for the fish industry-and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed-resulting in increased thermal stability and crystallinity of the material. The C2-C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups' formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.


Subject(s)
Cellulose/chemistry , Collagen/chemistry , Cross-Linking Reagents/chemistry , Gluconacetobacter/chemistry , Animals , Enzymes/chemistry , Fishes , Hydrogen Bonding , Microscopy, Electron, Scanning , Permeability , Polymers , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Temperature , Tensile Strength , Thermogravimetry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...