Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 187: 108614, 2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37295553

ABSTRACT

Current research in brain stimulation suggests transcutaneous auricular vagus nerve stimulation (taVNS) as a promising tool to modulate cognitive functions in healthy populations, such as attention, memory, and executive functions. Empirical evidence in single-task contexts, suggests that taVNS promotes holistic task processing, which strengthens the integration of multiple stimulus features in task processing. However, it is unclear how taVNS might affect performance in multitasking, where the integration of multiple stimuli leads to an overlap in stimulus response translation processes, increasing the risk of between-task interference (crosstalk). In a single-blinded, sham-controlled, within-subject design, participants underwent taVNS while performing a dual task. To assess the effects of taVNS, behavioral (reaction times), physiological (heart rate variability, salivary alpha-amylase), and subjective psychological variables (e.g., arousal) were recorded over three cognitive test blocks. Our results revealed no overall significant effect of taVNS on physiological and subjective psychological variables. However, the results showed a significant increase in between-task interference under taVNS in the first test block, but not in the subsequent test blocks. Our findings therefore suggest that taVNS increased integrative processing of both tasks early during active stimulation.


Subject(s)
Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Vagus Nerve Stimulation/methods , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology , Cognition , Executive Function
2.
Brain Stimul ; 15(6): 1378-1388, 2022.
Article in English | MEDLINE | ID: mdl-36183953

ABSTRACT

BACKGROUND: Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. METHODS: The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. RESULTS: While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. CONCLUSION(S): Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.


Subject(s)
Salivary alpha-Amylases , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Transcutaneous Electric Nerve Stimulation/methods , Vagus Nerve/physiology , Vagus Nerve Stimulation/methods
3.
Medicina (Kaunas) ; 57(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684154

ABSTRACT

Background and Objectives: This study aimed to compare the calculated running velocity at the anaerobic lactate threshold (cLTAn), determined by a mathematical model for metabolic simulation, with two established threshold concepts (onset of blood lactate accumulation (OBLA; 4 mmol∙L-1) and modified maximal deviation method (mDmax)). Additionally, all threshold concepts were correlated with performance in different endurance running events. Materials and Methods: Ten sub-elite runners performed a 30 s sprint test on a cycle ergometer adjusted to an isokinetic mode set to a cadence of 120 rpm to determine maximal lactate production rate (VLamax), and a graded exercise test on a treadmill to determine maximal oxygen uptake (VO2max). Running velocities at OBLA, mDmax, and cLTAn were then compared with each other, and further correlated with running performance over various distances (3000 m, 5000 m, and 10,000 m). Results: The mean difference in cLTAn was -0.13 ± 0.43 m∙s-1 and -0.32 ± 0.39 m∙s-1 compared to mDmax (p = 0.49) and OBLA (p < 0.01), respectively. cLTAn indicated moderate to good concordance with the established threshold concepts (mDmax: ICC = 0.87, OBLA: ICC = 0.74). In comparison with other threshold concepts, cLTAn exhibited comparable correlations with the assessed running performances (cLTAn: r = 0.61-0.76, mDmax: r = 0.69-0.79, OBLA: r = 0.56-0.69). Conclusion: Our data show that cLTAn can be applied for determining endurance performance during running. Due to the consideration of individual physiological profiles, cLTAn offers a physiologically justified approach to assess an athlete's endurance performance.


Subject(s)
Lactic Acid , Running , Anaerobic Threshold , Anaerobiosis , Exercise Test , Humans , Physical Endurance
SELECTION OF CITATIONS
SEARCH DETAIL
...