Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Aging ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834884

ABSTRACT

Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.

2.
Cancers (Basel) ; 15(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38001667

ABSTRACT

BACKGROUND: Due to the slow-growing nature of spinal meningiomas, they are mostly asymptomatic for a long time, and become symptomatic after the compression of the spinal cord or nerve roots. The aim of this study was to identify predictors for a poor clinical outcome after the surgical resection of spinal meningiomas and thereby to allow a preoperative identification of high-risk spinal meningiomas. METHODS: Data acquisition was conducted as a single-center retrospective analysis. From 1 January 2004 to 31 December 2019, 121 patients who underwent surgical resection of a spinal meningioma were reviewed. Clinical and radiological data (such as tumor size, location, occupation ratio of the spinal canal, and the degree of spinal cord compression) were assessed. The functional clinical findings of the patients were recorded using the Karnofsky Performance Score, modified McCormick scale, and Frankel scale preoperatively, at discharge, and 3-6 months after surgery. RESULTS: The mean patient age was 66 ± 13 years. A total of 104 (86%) patients were female and 17 (14%) were male. The thoracic spine (68%) was the most common location, followed by the cervical (29%) and lumbar (3%) spine. Preoperatively, 11.7% of patients were categorized as McCormick 1, 35.8% as 2, 39.2% as 3, 11.7% as 4, and 1.7% as 5. The neurological function of the patients with a functional deficit prior to surgery improved in 46% of the patients, remained unchanged in 52%, and worsened in 2% at discharge. At early follow-up, the proportions were 54%, 28%, and 5%, respectively. Preoperative Frankel scale was a significant predictor of a postoperative deterioration. Patients with Frankel score A to C preoperatively had a 9.2 times higher chance of clinical deterioration postoperatively (OR = 9.16). We found that the Frankel scale weakly correlated with the degree of spinal cord compression. In this study, other radiological parameters, such as the degree of cord compression and spinal canal occupation ratio, did not show a significant effect on the outcome. CONCLUSIONS: Surgery of intraspinal meningiomas can be considered safe. Neurological function improves in a large proportion of patients after surgery. However, a relevant preoperative deficit according to the Frankel scale (grade A-C) was a significant predictor of a postoperative neurological deterioration.

3.
Front Psychiatry ; 14: 1199097, 2023.
Article in English | MEDLINE | ID: mdl-37547211

ABSTRACT

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.

4.
Front Psychiatry ; 14: 1110525, 2023.
Article in English | MEDLINE | ID: mdl-36970280

ABSTRACT

Autism spectrum disorder (ASD) comprises a wide range of neurodevelopmental phenotypes united by impaired social interaction and repetitive behavior. Environmental and genetic factors are associated with the pathogenesis of ASD, while other cases are classified as idiopathic. The dopaminergic system has a profound impact in the modulation of motor and reward-motivated behaviors, and defects in dopaminergic circuits are implicated in ASD. In our study, we compare three well-established mouse models of ASD, one idiopathic, the BTBR strain, and two syndromic, Fmr1 and Shank3 mutants. In these models, and in humans with ASD, alterations in dopaminergic metabolism and neurotransmission were highlighted. Still, accurate knowledge about the distribution of dopamine receptor densities in the basal ganglia is lacking. Using receptor autoradiography, we describe the neuroanatomical distribution of D1 and D2 receptors in dorsal and ventral striatum at late infancy and adulthood in the above-mentioned models. We show that D1 receptor binding density is different among the models irrespective of the region. A significant convergence in increased D2 receptor binding density in the ventral striatum at adulthood becomes apparent in BTBR and Shank3 lines, and a similar trend was observed in the Fmr1 line. Altogether, our results confirm the involvement of the dopaminergic system, showing defined alterations in dopamine receptor binding density in three well-established ASD lines, which may provide a plausible explanation to some of the prevalent traits of ASD. Moreover, our study provides a neuroanatomical framework to explain the utilization of D2-acting drugs such as Risperidone and Aripiprazole in ASD.

6.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: mdl-34860860

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
7.
Cancers (Basel) ; 13(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34830991

ABSTRACT

Medulloblastoma is the most common malignant brain tumor in children. Immunotherapy is yet to demonstrate dramatic results in medulloblastoma, one reason being the low rate of mutations creating new antigens in this entity. In tumors with low mutational burden, gene fusions may represent a source of tumor-specific neoantigens. Here, we reviewed the landscape of fusions in medulloblastoma and analyzed their predicted immunogenicity. Furthermore, we described a new in-frame fusion protein identified by RNA-Seq. The fusion involved two genes on chromosome 2 coding for the enhancer of polycomb homolog 2 (EPC2) and GULP PTB domain containing engulfment adaptor 1 (GULP1) respectively. By qRT-PCR analysis, the fusion was detected in 3 out of 11 medulloblastoma samples, whereby 2 samples were from the same patients obtained at 2 different time points (initial diagnosis and relapse), but not in other pediatric brain tumor entities. Cloning of the full-length sequence indicated that the fusion protein contains the N-terminal enhancer of polycomb-like domain A (EPcA) of EPC2 and the coiled-coil domain of GULP1. In silico analyses predicted binding of the neoantigen-derived peptide to HLA-A*0201. A total of 50% of the fusions described in the literature were also predicted to produce an immunogenic peptide. The EPC2-GULP1 fusion peptide was able to induce a de novo T cell response characterized by interferon gamma release of CD8+ cytotoxic T cells in vitro. While the functional relevance of this fusion in medulloblastoma biology remains to be clarified, our data support an immunotherapeutic approach for pediatric medulloblastoma patients carrying the EPC2-GULP1 fusion and other immunogenic fusions.

8.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-33945503

ABSTRACT

BACKGROUNDDeciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell's function and its pathophysiology.METHODSWhole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene.RESULTSWe identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial localization. Consistent with mitochondrial dysfunction, the patients showed signs of respiratory chain defects, and a CRISPR/Cas9-KO cell model of C2orf69 had similar respiratory chain defects. Patient-derived cells revealed alterations in immunological signaling pathways. Deposits of periodic acid-Schiff-positive (PAS-positive) material in tissues from affected individuals, together with decreased glycogen branching enzyme 1 (GBE1) activity, indicated an additional impact of C2orf69 on glycogen metabolism.CONCLUSIONSOur study identifies C2orf69 as an important regulator of human mitochondrial function and suggests that this gene has additional influence on other metabolic pathways.


Subject(s)
Glycogen/metabolism , Loss of Function Mutation , Microcephaly/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Open Reading Frames , Animals , Cell Line , Glycogen/genetics , Glycogen Debranching Enzyme System/genetics , Glycogen Debranching Enzyme System/metabolism , Humans , Mice , Mice, Knockout , Microcephaly/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics
9.
J Clin Med ; 10(6)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799819

ABSTRACT

Infiltration of adjacent dura with meningioma cells is a common phenomenon. Wide resection of the dural tail (DT) to achieve a gross total resection is a general recommendation. We aimed to investigate a tumor cell infiltration of the DT after image-guided resection of convexity meningiomas. The study's inclusion criteria were the diagnosis of convexity meningioma, planned Simpson I° resection, and an identifiable DT. Intraoperative image-guidance was applied to identify the outer edge of the DT and to guide resection. After resection, en-bloc specimen or four samples of outermost pieces of DT in case of piecemeal resection were sent for histological analysis. In addition to resection margin infiltration, the radiological extent of DT, radiomic characteristics (109 in total), histology, and demographic data were assessed. Hierarchical clustering was used to generate patient clusters for radiomic analysis. Twenty-two patients were included in the study, while 20 (91%) were female. The mean age was 54.2 (Standard deviation (SD) 13.9, range 30-85) years. En-bloc resection could be achieved in 4 patients. The remaining patients received piecemeal resection. 2 DT samples were omitted due to tumor infiltration of the superior sagittal sinus. None of the en-bloc resection samples demonstrated dural infiltration on the resection margin. Tumor cells were detected in 4 of 70 (5.7%) dural tail samples and could not be excluded in another 5 of 70 (7.1%). No tumor recurrences were detected at follow-up MRI examinations after a mean follow-up of 27.5 (SD 13.2, range 0 to 50.0) months. There was no significant association between DT infiltration and histological subtype or patient characteristics and between DT extent and tumor infiltration. Clustering according to radiomic characteristics was not associated with tumor infiltration (p = 0.89). The radiological dural tail does not reliably outline the extent of tumor cell infiltration in convexity meningiomas. Hence, the extent of dural tail resection should not exclusively be guided by preoperative radiological appearance.

10.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33929610

ABSTRACT

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Subject(s)
Arteries/enzymology , Brain/enzymology , Encephalitis/prevention & control , Microglia/enzymology , Muramidase/deficiency , Myeloid Cells/enzymology , Noise, Transportation/adverse effects , Peripheral Vascular Diseases/prevention & control , Aircraft , Animals , Arteries/physiopathology , Brain/pathology , Disease Models, Animal , Encephalitis/enzymology , Encephalitis/etiology , Encephalitis/pathology , Gene Deletion , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Muramidase/genetics , Oxidative Stress , Peripheral Vascular Diseases/enzymology , Peripheral Vascular Diseases/etiology , Peripheral Vascular Diseases/physiopathology , Reactive Oxygen Species/metabolism
11.
Cancers (Basel) ; 13(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572900

ABSTRACT

The ganglioside GD2 is an important target in childhood cancer. Nevertheless, the only therapy targeting GD2 that is approved to date is the monoclonal antibody dinutuximab, which is used in the therapy of neuroblastoma. The relevance of GD2 as a target in other tumor entities remains to be elucidated. Here, we analyzed the expression of GD2 in different pediatric tumor entities by flow cytometry and tested two approaches for targeting GD2. H3K27M-mutant diffuse midline glioma (H3K27M-mutant DMG) samples showed the highest expression of GD2 with all cells strongly positive for the antigen. Ewing's sarcoma (ES) samples also showed high expression, but displayed intra- and intertumor heterogeneity. Osteosarcoma had low to intermediate expression with a high percentage of GD2-negative cells. Dinutuximab beta in combination with irinotecan and temozolomide was used to treat a five-year-old girl with refractory ES. Disease control lasted over 12 months until a single partially GD2-negative intracranial metastasis was detected. In order to target GD2 in H3K27M-mutant DMG, we blocked ganglioside synthesis via eliglustat, since dinutuximab cannot cross the blood-brain barrier. Eliglustat is an inhibitor of glucosylceramide synthase, and it is used for treating children with Gaucher's disease. Eliglustat completely inhibited the proliferation of primary H3K27M-mutant DMG cells in vitro. In summary, our data provide evidence that dinutuximab might be effective in tumors with high GD2 expression. Moreover, disrupting the ganglioside metabolism in H3K27M-mutant DMG could open up a new therapeutic option for this highly fatal cancer.

12.
Transl Stroke Res ; 12(6): 976-990, 2021 12.
Article in English | MEDLINE | ID: mdl-33496918

ABSTRACT

Although several studies have suggested that anti-inflammatory strategies reduce secondary infarct growth in animal stroke models, clinical studies have not yet demonstrated a clear benefit of immune modulation in patients. Potential reasons include systematic differences of post-ischemic neuroinflammation between humans and rodents. We here performed a systematic review and meta-analysis to summarize and compare the spatial and temporal distribution of immune cell infiltration in human and rodent stroke. Data on spatiotemporal distribution of immune cells (T cells, macrophages, and neutrophils) and infarct volume were extracted. Data from all rodent studies were pooled by means of a random-effect meta-analysis. Overall, 20 human and 188 rodent stroke studies were included in our analyses. In both patients and rodents, the infiltration of macrophages and neutrophils preceded the lymphocytic influx. Macrophages and neutrophils were the predominant immune cells within 72 h after infarction. Although highly heterogeneously across studies, the temporal profile of the poststroke immune response was comparable between patients and rodents. In rodent stroke, the extent of the immune cell infiltration depended on the duration and location of vessel occlusion and on the species. The density of infiltrating immune cells correlated with the infarct volume. In summary, we provide the first systematic analysis and comparison of human and rodent post-ischemic neuroinflammation. Our data suggest that the inflammatory response in rodent stroke models is comparable to that in patients with stroke. However, the overall heterogeneity of the post-ischemic immune response might contribute to the translational failure in stroke research.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Brain , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Rats
13.
J Cereb Blood Flow Metab ; 41(3): 471-485, 2021 03.
Article in English | MEDLINE | ID: mdl-33175596

ABSTRACT

The disappointing results in bench-to-bedside translation of neuroprotective strategies caused a certain shift in stroke research towards enhancing the endogenous recovery potential of the brain. One reason for this focus on recovery is the much wider time window for therapeutic interventions which is open for at least several months. Since recently two large clinical studies using d-amphetamine or fluoxetine, respectively, to enhance post-stroke neurological outcome failed again it is a good time for a critical reflection on principles and requirements for stroke recovery science. In principal, stroke recovery science deals with all events from the molecular up to the functional and behavioral level occurring after brain ischemia eventually ending up with any measurable improvement of various clinical parameters. A detailed knowledge of the spontaneously occurring post-ischemic regeneration processes is the indispensable prerequisite for any therapeutic approaches aiming to modify these responses to enhance post-stroke recovery. This review will briefly illuminate the molecular mechanisms of post-ischemic regeneration and the principle possibilities to foster post-stroke recovery. In this context, recent translational approaches are analyzed. Finally, the principal and specific requirements and pitfalls in stroke recovery research as well as potential explanations for translational failures will be discussed.


Subject(s)
Stroke/therapy , Aging , Brain/physiology , Humans , Intercellular Signaling Peptides and Proteins/therapeutic use , Matrix Metalloproteinase 9/metabolism , Neurotransmitter Agents/therapeutic use , Recovery of Function , Regeneration , Stroke/drug therapy , Tissue Plasminogen Activator/therapeutic use
14.
Cancers (Basel) ; 12(10)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053798

ABSTRACT

Up to 60% of atypical meningiomas (World Health Organization (WHO) grade II) reoccur within 5 years after resection. However, no clear radiological criteria exist to identify tumors with higher risk of relapse. In this study, we aimed to assess the association of certain radiomic and semantic features of atypical meningiomas in MRI with tumor recurrence. We identified patients operated on primary atypical meningiomas in our department from 2007 to 2017. An analysis of 13 quantitatively defined radiomic and 11 qualitatively defined semantic criteria was performed based on preoperative MRI scans. Imaging characteristics were assessed along with clinical and survival data. The analysis included 76 patients (59% women, mean age 59 years). Complete tumor resection was achieved in 65 (86%) cases, and tumor relapse occurred in 17 (22%) cases. Mean follow-up time was 41.6 (range 3-168) months. Cystic component was significantly associated with tumor recurrence (odds ratio (OR) 21.7, 95% confidence interval (CI) 3.8-124.5) and shorter progression-free survival (33.2 vs. 80.7 months, p < 0.001), whereas radiomic characteristics had no predictive value in univariate analysis. However, multivariate analysis demonstrated significant predictive value of high cluster prominence (hazard ratio (HR) 5.89 (1.03-33.73) and cystic component (HR 20.21 (2.46-166.02)) for tumor recurrence. The combination of radiomic and semantic features might be an effective tool for identifying patients with high-risk atypical meningiomas. The presence of a cystic component in these tumors is associated with a high risk of tumor recurrence.

15.
Clin Neuropathol ; 39(5): 203-211, 2020.
Article in English | MEDLINE | ID: mdl-32352373

ABSTRACT

We here report on the first neuropathological round robin trials initiated by the Quality Assurance Initiative Pathology (QuIP) in Germany in the years 2018 and 2019. Testing services as external laboratory controls were offered for IDH1-R132H immunohistochemistry in 2018 followed by a molecular trial for IDH1 and IDH2 mutations in 2019 including the rare mutational variants. Also in 2019, a trial on MGMT promoter methylation testing was offered. On a national scale, trial offers were well received with around 40 participating institutions. The international announcement of the molecular IDH1/IDH2 mutational trial achieved only moderate European outspread. Success rates in all three trials were excellent (IDH1-R132H immunohistochemistry 2018: 94%, 18 out of 20 possible points required; IDH1/IDH2 mutational status 2019: 100%, 19 out of 20 possible points required; MGMT promoter methylation 2019: 94%, 19 out of 20 possible points required) indicating that quality standards are high in the broad majority of the institutions. Trial participation also involved filling in a questionnaire asking for background information on local testing procedures. We here present a first assessment of the information collected providing unique insights in the landscape of molecular testing in neuropathology. Derived from this information we identify future challenges and provide an outlook on the development of quality assurance in the field of neuropathology.


Subject(s)
Biomarkers, Tumor/analysis , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Isocitrate Dehydrogenase/genetics , Neuropathology/standards , Quality Assurance, Health Care , Tumor Suppressor Proteins/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Germany , Glioma/genetics , Glioma/pathology , Humans , Mutation , Pathology, Clinical/standards
16.
J Neuroradiol ; 46(1): 36-43, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29733920

ABSTRACT

BACKGROUND: Response Assessment in Neuro-Oncology Criteria (RANO), are used to asses response to first-line treatment of glioblastoma (GBM). Differentiation between response and pseudoresponse under treatment with Bevacizumab (BVZ) remains challenging. This study evaluates ADC changes in patients with radiographic pseudoresponse under treatment with (BVZ). METHODS: Patients (n=40) with recurrent GBM under-treatment with BVZ underwent MRI before, two and four months after treatment with BVZ. In patients with radiological pseudoresponse (n=11), ADC analyses were performed. Areas with decreasing T1 contrast enhancement (CE) and FLAIR signal decrease were manually selected and compared to size and position matched healthy contralateral brain parenchyma. RESULTS: Histogram based ADC (10-6×mm2/s) of these patients decreased significantly (P<0.005) from baseline MRI (T1-CE, FLAIR: 1124.9±160.3, 1098.4±226.2, respectively) to 2months (781.3±110.7, 783.3±103.3) and remained stable during 4months (777.0±138.5, 784.4±155.4, all mean±1 SD), despite progressive disease. Mean ADC values of the healthy contralateral brain tissue remained stable (P>0.05) (ADC values: baseline: 786.2±110.7, 2months: 781.1±76.2, 4months: 804.1±86.2). CONCLUSION: Treatment of GBM with BVZ leads to a decrease of ADC values in areas of pre-treatment T1-CE/FLAIR signal hyperintensity to levels of comparable with normal brain tissue. ADC values remained stable, even when progressive tumor growth was reported.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Diffusion Magnetic Resonance Imaging/methods , Glioblastoma/diagnostic imaging , Glioblastoma/drug therapy , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/drug therapy , Adult , Aged , Brain Neoplasms/pathology , Female , Glioblastoma/pathology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Treatment Outcome
17.
Brain Struct Funct ; 223(7): 3463-3471, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29936552

ABSTRACT

The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of antiphospholipid antibodies, which may trigger vascular thrombosis with consecutive infarcts. However, cognitive dysfunctions representing one of the most commonest neuropsychiatric symptoms are frequently present despite the absence of any ischemic brain lesions. Data on the structural and functional basis of the neuropsychiatric symptoms are sparse. To examine the effect of APS on hippocampal neurogenesis and on white matter, we induced experimental APS (eAPS) in adult female Balb/C mice by immunization with ß2-glycoprotein 1. To investigate cell proliferation in the dentate gyrus granular cell layer (DG GCL), eAPS and control mice (n = 5, each) were injected with 5-bromo-2'-deoxyuridine (BrdU) once a day for 10 subsequent days. Sixteen weeks after immunization, eAPS resulted in a significant reduction of BrdU-positive cells in the DG GCL compared to control animals. However, double staining with doublecortin and NeuN revealed a largely preserved neurogenesis. Ultrastructural analysis of corpus callosum (CC) axons in eAPS (n = 6) and control mice (n = 7) revealed no significant changes in CC axon diameter or g-ratio. In conclusion, decreased cellular proliferation in the hippocampus of eAPS mice indicates a limited regenerative potential and may represent one neuropathological substrate of cognitive changes in APS while evidence for alterations of white matter integrity is lacking.


Subject(s)
Antiphospholipid Syndrome/chemically induced , Antiphospholipid Syndrome/pathology , Cell Proliferation , Dentate Gyrus/pathology , Animals , Antibodies, Antiphospholipid/metabolism , Autoantigens/pharmacology , Behavior Rating Scale , Bromodeoxyuridine/administration & dosage , Bromodeoxyuridine/metabolism , Cell Differentiation/physiology , Corpus Callosum/ultrastructure , Disease Models, Animal , Female , Fluorescence , Mice , Mice, Inbred BALB C , Neurogenesis , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/metabolism , beta 2-Glycoprotein I/pharmacology
18.
Front Mol Neurosci ; 11: 30, 2018.
Article in English | MEDLINE | ID: mdl-29479305

ABSTRACT

Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of ß-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral assessments provide first evidence that deficiency of the psychiatric disease-associated Negr1 gene may affect neuronal growth and behavior. These findings might be relevant to further evaluate the role of NEGR1 in cognitive and psychiatric disorders.

20.
Acta Neuropathol ; 133(2): 245-261, 2017 02.
Article in English | MEDLINE | ID: mdl-28064357

ABSTRACT

The vast majority of cerebral stroke cases are caused by transient or permanent occlusion of a cerebral blood vessel ("ischemic stroke") eventually leading to brain infarction. The final infarct size and the neurological outcome depend on a multitude of factors such as the duration and severity of ischemia, the existence of collateral systems and an adequate systemic blood pressure, etiology and localization of the infarct, but also on age, sex, comorbidities with the respective multimedication and genetic background. Thus, ischemic stroke is a highly complex and heterogeneous disorder. It is immediately obvious that experimental models of stroke can cover only individual specific aspects of this multifaceted disease. A basic understanding of the principal molecular pathways induced by ischemia-like conditions comes already from in vitro studies. One of the most frequently used in vivo models in stroke research is the endovascular suture or filament model in rodents with occlusion of the middle cerebral artery (MCA), which causes reproducible infarcts in the MCA territory. It does not require craniectomy and allows reperfusion by withdrawal of the occluding filament. Although promptly restored blood flow is far from the pathophysiology of spontaneous human stroke, it more closely mimics the therapeutic situation of mechanical thrombectomy which is expected to be increasingly applied to stroke patients. Direct transient or permanent occlusion of cerebral arteries represents an alternative approach but requires craniectomy. Application of endothelin-1, a potent vasoconstrictor, allows induction of transient focal ischemia in nearly any brain region and is frequently used to model lacunar stroke. Circumscribed and highly reproducible cortical lesions are characteristic of photothrombotic stroke where infarcts are induced by photoactivation of a systemically given dye through the intact skull. The major shortcoming of this model is near complete lack of a penumbra. The two models mimicking human stroke most closely are various embolic stroke models and spontaneous stroke models. Closeness to reality has its price and goes along with higher variability of infarct size and location as well as unpredictable stroke onset in spontaneous models versus unpredictable reperfusion in embolic clot models.


Subject(s)
Disease Models, Animal , Stroke , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...