Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Solid State Nucl Magn Reson ; 106: 101650, 2020 04.
Article in English | MEDLINE | ID: mdl-32044558

ABSTRACT

The molecular structure of a crosslinked nitrogen-rich resin made from melamine, urea, and aldehydes, and of microcapsules made from the reactive resin with multiple polymeric components in aqueous dispersion, has been analyzed by 13C, 13C{1H}, 1H-13C, 1H, 13C{14N}, and 15N solid-state NMR without isotopic enrichment. Quantitative 13C NMR spectra of the microcapsules and three precursor materials enable determination of the fractions of different components. Spectral editing of non-protonated carbons by recoupled dipolar dephasing, of CH by dipolar DEPT, and of C-N by 13C{14N} SPIDER resolves peak overlap and helps with peak assignment. It reveals that the N- and O-rich resin "imitates" the spectrum of polysaccharides such as chitin, cellulose, or Ambergum to an astonishing degree. 15N NMR can distinguish melamine from urea and guanazole, NC=O from COO, and primary from secondary amines. Such a comprehensive and quantitative analysis enables prediction of the elemental composition of the resin, to be compared with combustion analysis for validation. It also provides a reliable reference for iterative simulations of 13C NMR spectra from structural models. The conversion from quantitative NMR peak areas of structural components to the weight fractions of interest in industrial practice is derived and demonstrated. Upon microcapsule formation, 15N and 13C NMR consistently show loss of urea and aldehyde and an increase in primary amines while melamine is retained. NMR also made unexpected findings, such as imbedded crystallites in one of the resins, as well as persistent radicals in the microcapsules. The crystallites produce distinct sharp lines and are distinguished from liquid-like components by their strong dipolar couplings, resulting in fast dipolar dephasing. Fast 1H spin-lattice relaxation on the 35-ms time scale and characteristically non-exponential 13C spin-lattice relaxation indicate persistent radicals, confirmed by EPR. Through 1H spin diffusion, the mixing of components on the 5-nm scale was documented.


Subject(s)
Nitrogen/chemistry , Nuclear Magnetic Resonance, Biomolecular , Polymers/chemistry , Aldehydes/chemistry , Capsules , Free Radicals/chemistry , Triazines/chemistry , Urea/chemistry
2.
Anal Chem ; 87(15): 7550-4, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26158226

ABSTRACT

The intramolecular (13)C composition of a molecule retains evidence relevant to its (bio)synthetic history and can provide valuable information in numerous fields ranging from biochemistry to environmental sciences. Isotope ratio monitoring by (13)C NMR spectrometry (irm-(13)C NMR) is a generic method that offers the potential to conduct (13)C position-specific isotope analysis with a precision better than 1‰. Until now, determining absolute values also required measurement of the global (or bulk) (13)C composition (δ(13)Cg) by mass spectrometry. In a radical new approach, it is shown that an internal isotopic chemical reference for irm-(13)C NMR can be used instead. The strategy uses (1)H NMR to quantify both the number of moles of the reference and of the studied compound present in the NMR tube. Thus, the sample preparation protocol is greatly simplified, bypassing the previous requirement for precise purity and mass determination. The key to accurate results is suppressing the effect of radiation damping in (1)H NMR which produces signal distortion and alters quantification. The methodology, applied to vanillin with dimethylsulfone as an internal standard, has an equivalent accuracy (<1‰) to that of the conventional approach. Hence, it was possible to clearly identify vanillin from different origins based on the (13)C isotopic profiles.

3.
Magn Reson Chem ; 53(4): 304-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25616134

ABSTRACT

Isomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra. Simple consolidation of the subspectra yields (13) C NMR spectra for individual isomers. Alternatively, CSSF-INEPT with heteronuclear long-range transfer can correlate the isolated networks of coupled spins and therefore facilitate the reconstruction of the (13) C NMR spectra for isomers containing multiple spin systems. A proof-of-principle validation of the CSSF-TOCSY-INEPT experiment is demonstrated on three mixtures with different spectral and structural complexities. The results show that CSSF-TOCSY-INEPT is a versatile, powerful tool for deconvoluting isomeric mixtures within the NMR tube with unprecedented resolution and offers unique, unambiguous spectral information for structure elucidation.

4.
Food Chem ; 143: 325-35, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24054247

ABSTRACT

Due to the importance of citrus lemon oil for the industry, fast and reliable analytical methods that allow the authentication and/or classification of such oil, using the origin of production or extraction process, are necessary. To evaluate the potential of volatile and non-volatile fractions for classification purposes, volatile compounds of cold-pressed lemon oils were analyzed, using GC-FID/MS and FT-MIR, while the non-volatile residues were studied, using FT-MIR, (1)H-NMR and UHPLC-TOF-MS. 64 Lemon oil samples from Argentina, Spain and Italy were considered. Unsupervised and supervised multivariate analyses were sequentially performed on various data blocks obtained by the above techniques. Successful data treatments led to statistically significant models that discriminated and classified cold-pressed lemon oils according to their geographic origin, as well as their production processes. Studying the loadings allowed highlighting of important classes of discriminant variables that corresponded to putative or identified chemical functions and compounds.


Subject(s)
Citrus/chemistry , Metabolomics/methods , Oils, Volatile/chemistry , Plant Oils/chemistry , Argentina , Citrus/metabolism , Discriminant Analysis , Gas Chromatography-Mass Spectrometry , Italy , Magnetic Resonance Spectroscopy , Multivariate Analysis , Oils, Volatile/metabolism , Plant Oils/metabolism , Spain , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
5.
Food Chem ; 150: 235-45, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24360445

ABSTRACT

The detailed characterization of cold-pressed lemon oils (CPLOs) is of great importance for the flavor and fragrance (F&F) industry. Since a control of authenticity by standard analytical techniques can be bypassed using elaborated adulterated oils to pretend a higher quality, a combination of advanced orthogonal methods has been developed. The present study describes a combined metabolomic approach based on UHPLC-TOF-MS profiling and (1)H NMR fingerprinting to highlight metabolite differences on a set of representative samples used in the F&F industry. A new protocol was set up and adapted to the use of CPLO residues. Multivariate analysis based on both fingerprinting methods showed significant chemical variations between Argentinian and Italian samples. Discriminating markers identified in mixtures belong to furocoumarins, flavonoids, terpenoids and fatty acids. Quantitative NMR revealed low citropten and high bergamottin content in Italian samples. The developed metabolomic approach applied to CPLO residues gives some new perspectives for authenticity assessment.


Subject(s)
Biomarkers/chemistry , Citrus/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Plant Oils/chemistry , Discriminant Analysis
6.
Anal Chim Acta ; 788: 108-13, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23845488

ABSTRACT

Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.


Subject(s)
Carbon Isotopes/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Benzaldehydes/chemistry , Laboratories , Pilot Projects , Reproducibility of Results
7.
Chemistry ; 17(22): 6214-20, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21503982

ABSTRACT

In the search for a new access to thujopsanone related compounds by cycloisomerization reactions of unsaturated propargylic alcohols and acetates, we found several interesting reaction types and demonstrated the complementarity of Au, Pt, and Cu catalysts. Thus, 6-en-1-yn-3-ol 10a underwent clean cyclization/ether formation to 16, in particular using Au catalysts (76-98%) or a newly prepared Cu(I)-triflimidate-catalyst (94%). The corresponding acetate 11 a underwent either the cycloisomerization with concomitant [1,2]-acyl shift (to 12: 78% using AuCl(3)) or an unprecedented rearrangement-cycloaddition leading to 20 (43% using [(tBuXPhos)AuNTf(2)]), a strained fused tricyclic ring system containing a [2.2.0] bicyclic subunit.

8.
Chemistry ; 17(14): 3832-6, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21381139
9.
Org Lett ; 8(9): 1839-41, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623564

ABSTRACT

[reaction: see text] The Cu(I)-catalyzed cycloisomerization of tertiary 5-en-1-yn-3-ols with an 1,2-alkyl shift affords stereoselectively tri- and tetracyclic compounds of high molecular complexity. These results are in agreement with a mechanism in which the cyclopropanation precedes the rearrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...