Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791225

ABSTRACT

Epidermal melanin synthesis determines an individual's skin color. In humans, melanin is formed by melanocytes within the epidermis. The process of melanin synthesis strongly depends on a range of cellular factors, including the fine-tuned interplay with reactive oxygen species (ROS). In this context, a role of cold atmospheric plasma (CAP) on melanin synthesis was proposed due to its tunable ROS generation. Herein, the argon-driven plasma jet kINPen® MED was employed, and its impact on melanin synthesis was evaluated by comparison with known stimulants such as the phosphodiesterase inhibitor IBMX and UV radiation. Different available model systems were employed, and the melanin content of both cultured human melanocytes (in vitro) and full-thickness human skin biopsies (in situ) were analyzed. A histochemical method detected melanin in skin tissue. Cellular melanin was measured by NIR autofluorescence using flow cytometry, and a highly sensitive HPLC-MS method was applied, which enabled the differentiation of eu- and pheomelanin by their degradation products. The melanin content in full-thickness human skin biopsies increased after repeated CAP exposure, while there were only minor effects in cultured melanocytes compared to UV radiation and IBMX treatment. Based on these findings, CAP does not appear to be a useful option for treating skin pigmentation disorders. On the other hand, the risk of hyperpigmentation as an adverse effect of CAP application for wound healing or other dermatological diseases seems to be neglectable.


Subject(s)
Epidermis , Melanins , Melanocytes , Plasma Gases , Humans , Melanins/metabolism , Melanins/biosynthesis , Melanocytes/metabolism , Melanocytes/drug effects , Plasma Gases/pharmacology , Epidermis/metabolism , Epidermis/drug effects , Epidermis/radiation effects , Ultraviolet Rays , Skin Pigmentation/drug effects , Skin Pigmentation/radiation effects , Cells, Cultured , Reactive Oxygen Species/metabolism , Biopsy , Melanogenesis
2.
Microorganisms ; 9(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34361888

ABSTRACT

Phycocyanin is a blue colored pigment, synthesized by several species of cyanobacteria and red algae. Besides the application as a food-colorant, the pigmented protein is of high interest as a pharmaceutically and nutritionally valuable compound. Since cyanobacteria-derived phycocyanin is thermolabile, red algae that are adapted to high temperatures are an interesting source for phycocyanin extraction. Still, the extraction of high quality phycocyanin from red algae is challenging due to the strong and rigid cell wall. Since standard techniques show low yields, alternative methods are needed. Recently, spark discharges have been shown to gently disintegrate microalgae and thereby enable the efficient extraction of susceptible proteins. In this study, the applicability of spark discharges for phycocyanin extraction from the red alga Cyanidium caldarium was investigated. The efficiency of 30 min spark discharges was compared with standard treatment protocols, such as three times repeated freeze-thaw cycles, sonication, and pulsed electric fields. Input energy for all physical methods were kept constant at 11,880 J to ensure comparability. The obtained extracts were evaluated by photometric and fluorescent spectroscopy. Highest extraction yields were achieved with sonication (53 mg/g dry weight (dw)) and disintegration by spark discharges (4 mg/g dw) while neither freeze-thawing nor pulsed electric field disintegration proved effective. The protein analysis via LC-MS of the former two extracts revealed a comparable composition of phycobiliproteins. Despite the lower total concentration of phycocyanin after application of spark discharges, the purity in the raw extract was higher in comparison to the extract attained by sonication.

SELECTION OF CITATIONS
SEARCH DETAIL
...