Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 7(1): 10399, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28871202

ABSTRACT

The current debate about megafaunal extinctions during the Quaternary focuses on the extent to which they were driven by humans, climate change, or both. These two factors may have interacted in a complex and unexpected manner, leaving the exact pathways to prehistoric extinctions unresolved. Here we quantify, with unprecedented detail, the contribution of humans and climate change to the Holocene decline of the largest living terrestrial carnivore, the brown bear (Ursus arctos), on a continental scale. We inform a spatially explicit metapopulation model for the species by combining life-history data and an extensive archaeofaunal record from excavations across Europe with reconstructed climate and land-use data reaching back 12,000 years. The model reveals that, despite the broad climatic niche of the brown bear, increasing winter temperatures contributed substantially to its Holocene decline - both directly by reducing the species' reproductive rate and indirectly by facilitating human land use. The first local extinctions occurred during the Mid-Holocene warming period, but the rise of the Roman Empire 2,000 years ago marked the onset of large-scale extinctions, followed by increasingly rapid range loss and fragmentation. These findings strongly support the hypothesis that complex interactions between climate and humans may have accelerated megafaunal extinctions.


Subject(s)
Extinction, Biological , Ursidae/growth & development , Animals , Climate Change , Europe , Human Activities , Humans
3.
Proc Biol Sci ; 283(1827): 20152152, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27009229

ABSTRACT

The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18,700 mammalian zooarchaeological records for the last 11,700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of 'static' past baselines to inform current-day environmental management and restoration.


Subject(s)
Animal Distribution , Biodiversity , Extinction, Biological , Mammals/physiology , Animals , Archaeology , Europe , Fossils , Paleontology , Species Specificity
4.
Glob Chang Biol ; 19(6): 1865-74, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23505017

ABSTRACT

The Late Quaternary was a time of rapid climatic oscillations and drastic environmental changes. In general, species can respond to such changes by behavioral accommodation, distributional shifts, ecophenotypic modifications (nongenetic), evolution (genetic) or ultimately face local extinction. How those responses manifested in the past is essential for properly predicting future ones especially as the current warm phase is further intensified by rising levels of atmospheric carbon dioxide. Here, we use ancient DNA (aDNA) and morphological features in combination with ecological niche modeling (ENM) to investigate genetic and nongenetic responses of Central European Palearctic shrews to past climatic change. We show that a giant form of shrew, previously described as an extinct Pleistocene Sorex species, represents a large ecomorph of the common shrew (Sorex araneus), which was replaced by populations from a different gene-pool and with different morphology after the Pleistocene Holocene transition. We also report the presence of the cold-adapted tundra shrew (S. tundrensis) in Central Europe. This species is currently restricted to Siberia and was hitherto unknown as an element of the Pleistocene fauna of Europe. Finally, we show that there is no clear correlation between climatic oscillations within the last 50 000 years and body size in shrews and conclude that a special nonanalogous situation with regard to biodiversity and food supply in the Late Glacial may have caused the observed large body size.


Subject(s)
Climate Change , Shrews/physiology , Animals , Arctic Regions , Cluster Analysis , DNA/genetics , Models, Theoretical , Shrews/genetics
5.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22048313

ABSTRACT

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Subject(s)
Biota , Climate Change/history , Extinction, Biological , Human Activities/history , Mammals/physiology , Animals , Bayes Theorem , Bison , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Europe , Fossils , Genetic Variation , Geography , History, Ancient , Horses , Humans , Mammals/genetics , Mammoths , Molecular Sequence Data , Population Dynamics , Reindeer , Siberia , Species Specificity , Time Factors
6.
PLoS One ; 5(5): e10447, 2010 May 27.
Article in English | MEDLINE | ID: mdl-20523724

ABSTRACT

BACKGROUND: Global temperature increased by approximately half a degree (Celsius) within the last 150 years. Even this moderate warming had major impacts on Earth's ecological and biological systems, especially in the Arctic where the magnitude of abiotic changes even exceeds those in temperate and tropical biomes. Therefore, understanding the biological consequences of climate change on high latitudes is of critical importance for future conservation of the species living in this habitat. The past 25,000 years can be used as a model for such changes, as they were marked by prominent climatic changes that influenced geographical distribution, demographic history and pattern of genetic variation of many extant species. We sequenced ancient and modern DNA of the collared lemming (Dicrostonyx torquatus), which is a key species of the arctic biota, from a single site (Pymva Shor, Northern Pre Urals, Russia) to see if climate warming events after the Last Glacial Maximum had detectable effects on the genetic variation of this arctic rodent species, which is strongly associated with a cold and dry climate. RESULTS: Using three dimensional network reconstructions we found a dramatic decline in genetic diversity following the LGM. Model-based approaches such as Approximate Bayesian Computation and Markov Chain Monte Carlo based Bayesian inference show that there is evidence for a population decline in the collared lemming following the LGM, with the population size dropping to a minimum during the Greenland Interstadial 1 (Bølling/Allerød) warming phase at 14.5 kyrs BP. CONCLUSION: Our results show that previous climate warming events had a strong influence on genetic diversity and population size of collared lemmings. Due to its already severely compromised genetic diversity a similar population reduction as a result of the predicted future climate change could completely abolish the remaining genetic diversity in this population. Local population extinctions of collared lemmings would have severe effects on the arctic ecosystem, as collared lemmings are a key species in the trophic interactions and ecosystem processes in the Arctic.


Subject(s)
Arvicolinae/genetics , Climate , DNA/genetics , Global Warming , Animals , Arctic Regions , DNA, Mitochondrial/genetics , Demography , Gene Flow/genetics , Haplotypes/genetics , Ice Cover , Models, Genetic , Phylogeny , Russia , Time Factors
7.
Mol Ecol ; 18(6): 1252-62, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19222749

ABSTRACT

Using ancient DNA sequences of subfossil European pond turtles (Emys orbicularis) from Britain, Central and North Europe and accelerator mass spectrometry radiocarbon dating for turtle remains from most Swedish sites, we provide evidence for a Holocene range expansion of the pond turtle from the southeastern Balkans into Britain, Central Europe and Scandinavia, according to the 'grasshopper pattern' of Hewitt. Northeastern Europe and adjacent Asia were colonized from another refuge located further east. With increasing annual mean temperatures, pond turtles reached southern Sweden approximately 9800 years ago. Until approximately 5500 years ago, rising temperatures facilitated a further range expansion up to Ostergötland, Sweden (approximately 58 degrees 30'N). However, around 5500 years ago pond turtle records suddenly terminate in Sweden, some 1500 years before the Holocene thermal maximum ended in Scandinavia and distinctly earlier than previously thought. This extinction coincides with a temporary cooling oscillation during the Holocene thermal maximum and is likely related to lower summer temperatures deteriorating reproductive success. Although climatic conditions improved later again, recolonization of Sweden from southern source populations was prevented by the Holocene submergence of the previous land connection via the Danish Straits that occurred approximately 8500 years ago.


Subject(s)
Climate , Extinction, Biological , Turtles/genetics , Animals , Base Sequence , Molecular Sequence Data , Radiometric Dating , Sequence Analysis, DNA , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...