Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Manage ; 286: 112191, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33667822

ABSTRACT

The sustainable land management program (SLMP) of Ethiopia aims to improve livelihoods and create resilient communities and landscape to climate change. Soil organic carbon (SOC) sequestration is one of the key co-benefits of the SLMP. The objective of this study was to estimate the spatial dynamics of SOC in 2010 and 2018 (before and after SLMP) and identify the SOC sequestration hotspots at landscape scale in four selected SLMP watersheds in the Ethiopian highlands. The specific objectives were to: 1) comparatively evaluate SOC sequestration estimation model building strategies using either a single watershed, a combined dataset from all watersheds, and leave-one-watershed-out using Random Forest (RF) model; 2) map SOC stock of 2010 and 2018 to estimate amount of SOC sequestration and potential; 3) evaluate the impacts of SLM practices on SOC in four SLMP watersheds. A total of 397 auger composite samples from the topsoil (0-20 cm depth) were collected in 2010, and the same number of samples were collected from the same locations in 2018. We used simple statistics to assess the SOC change between the two periods, and machine learning models to predict SOC stock spatially. The study showed that statistically significant variation (P < 0.05) of SOC was observed between the two years in two watersheds (Gafera and Adi Tsegora) whereas the differences were not significant in the other two watersheds (Yesir and Azugashuba). Comparative analysis of model-setups shows that a combined dataset from all the four watersheds to train and test RF outperform the other two strategies (a single watershed alone and a leave-one-watershed-out to train and test RF) during the testing dataset. Thus, this approach was used to predict SOC stock before (2010) and after (2018) land management interventions and to derive the SOC sequestration maps. We estimated the sequestrated, achievable and target level of SOC stock spatially in the four watersheds. We assessed the impact of SLM practices, specifically bunds, terraces, biological and various forms of tillage practices on SOC using partial dependency algorithms of prediction models. No tillage (NT) increased SOC in all watersheds. The combination of physical and biological interventions ("bunds + vegetations" or "terraces + vegetations") resulted in the highest SOC stock, followed by the biological intervention. The achievable SOC stock analysis showed that further SOC stock sequestration of up to 13.7 Mg C ha--1 may be possible in the Adi Tsegora, 15.8 Mg C ha-1 in Gafera, 33.2 Mg C ha-1 in Azuga suba and 34.7 Mg C ha-1 in Yesir watersheds.


Subject(s)
Carbon , Soil , Agriculture , Carbon Sequestration , Conservation of Natural Resources , Ethiopia
3.
Sci Rep ; 7(1): 15554, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29138460

ABSTRACT

The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO2. There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26-53% of the target of the "4p1000 Initiative: Soils for Food Security and Climate". The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.


Subject(s)
Carbon Sequestration , Carbon/metabolism , Crops, Agricultural/metabolism , Soil/chemistry , Climate , Crops, Agricultural/chemistry , Ethiopia , Europe , Food Supply , Humans , India , North America
4.
Glob Chang Biol ; 22(12): 3859-3864, 2016 12.
Article in English | MEDLINE | ID: mdl-27185416

ABSTRACT

More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO2 e yr-1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit.


Subject(s)
Agriculture , Climate Change , Gases/analysis , Greenhouse Effect/prevention & control , Carbon/analysis , Greenhouse Effect/legislation & jurisprudence , International Cooperation , Methane/analysis , Public Policy , Soil/chemistry
6.
J Environ Manage ; 144: 83-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24929498

ABSTRACT

When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC.


Subject(s)
Agriculture , Carbon/analysis , Climate Change , Soil/chemistry , Carbon Sequestration , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...