Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biointerphases ; 7(1-4): 55, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22956465

ABSTRACT

We synthesized nano-scaled periodic ripple patterns on silicon and titanium dioxide (TiO(2)) surfaces by xenon ion irradiation, and performed adsorption experiments with human plasma fibrinogen (HPF) on such surfaces as a function of the ripple wavelength. Atomic force microscopy showed the adsorption of HPF in mostly globular conformation on crystalline and amorphous flat Si surfaces as well as on nano-structured Si with long ripple wavelengths. For short ripple wavelengths the proteins seem to adsorb in a stretched formation and align across or along the ripples. In contrast to that, the proteins adsorb in a globular assembly on flat and long-wavelength rippled TiO(2), but no adsorbed proteins could be observed on TiO(2) with short ripple wavelengths due to a decrease of the adsorption energy caused by surface curvature. Consequently, the adsorption behavior of HPF can be tuned on biomedically interesting materials by introducing a nano-sized morphology while not modifying the stoichiometry/chemistry.


Subject(s)
Adsorption , Fibrinogen/chemistry , Silicon/chemistry , Titanium/chemistry , Fibrinogen/metabolism , Humans , Microscopy, Atomic Force , Silicon/metabolism , Titanium/metabolism
2.
Nanoscale Res Lett ; 6: 511, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21867525

ABSTRACT

We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device.

3.
Nano Lett ; 9(9): 3239-44, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19653645

ABSTRACT

Silicon nanocrystals were synthesized by CO(2) laser pyrolysis of SiH(4). The fresh silicon nanopowder was oxidized in water to obtain SiO(2) nanoparticles (NPs) exhibiting strong red-orange photoluminescence. Samples of SiO(2) NPs embedded in low concentration in a thin polymer layer were prepared by spin-coating a dedicated solution on quartz cover slides. Using an argon ion laser at 488 nm with higher-order laser modes (azimuthally and radially polarized doughnut modes) for excitation, the three-dimensional orientation of the nanoparticles' transition dipole moment was investigated in a confocal microscope. The linear transition dipole moment was found to be rather stable and randomly oriented. However, dynamical effects such as fluorescence intermittency and transition dipole moment flipping could also be observed. The spectral analysis of single SiO(2) NPs revealed double-peak spectra consisting of a narrow zero-phonon line and a broader phonon band being associated with the excitation of longitudinal optical phonons in the SiO(2) NP.


Subject(s)
Luminescence , Nanostructures/chemistry , Silicon Dioxide/chemistry , Argon/chemistry , Electrons , Lasers , Materials Testing , Microscopy, Confocal , Nanotechnology , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...