Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 115(13): 3398-3403, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29540568

ABSTRACT

Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3-) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3- concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3- that is typically below detection limits. Here we reexamine NO3- use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3- Soil-derived NO3- was detected in tundra plant tissues, and tundra plants took up soil NO3- at comparable rates to plants from relatively NO3--rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3- relative to soil NO3- accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3- availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3- availability in tundra soils is crucial for predicting C storage in tundra.


Subject(s)
Nitrates/metabolism , Nitrogen/analysis , Plant Leaves/metabolism , Soil/chemistry , Tundra , Denitrification , Plant Leaves/growth & development
2.
New Phytol ; 199(1): 163-175, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23614757

ABSTRACT

The Arctic is already experiencing changes in plant community composition, so understanding the contribution of different vegetation components to carbon (C) cycling is essential in order to accurately quantify ecosystem C balance. Mosses contribute substantially to biomass, but their impact on carbon use efficiency (CUE) - the proportion of gross primary productivity (GPP) incorporated into growth - and aboveground versus belowground C partitioning is poorly known. We used (13) C pulse-labelling to trace assimilated C in mosses (Sphagnum sect. Acutifolia and Pleurozium schreberi) and in dwarf shrub-P. schreberi vegetation in sub-Arctic Finland. Based on (13) C pools and fluxes, we quantified the contribution of mosses to GPP, CUE and partitioning. Mosses incorporated 20 ± 9% of total ecosystem GPP into biomass. CUE of Sphagnum was 68-71%, that of P. schreberi was 62-81% and that of dwarf shrub-P. schreberi vegetation was 58-74%. Incorporation of C belowground was 10 ± 2% of GPP, while vascular plants alone incorporated 15 ± 4% of their fixed C belowground. We have demonstrated that mosses strongly influence C uptake and retention in Arctic dwarf shrub vegetation. They increase CUE, and the fraction of GPP partitioned aboveground. Arctic C models must include mosses to accurately represent ecosystem C dynamics.


Subject(s)
Bryophyta/metabolism , Carbon/metabolism , Arctic Regions , Biomass , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Ecosystem , Finland , Models, Biological
3.
Ecol Lett ; 12(7): E12-4; discussion E15-8, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19527269

ABSTRACT

Bradford et al. (2008) conclude that thermal adaptation will reduce the response of soil microbial respiration to rising global temperatures. However, we question both the methods used to calculate mass-specific respiration rates and the interpretation of the results. No clear evidence of thermal adaptation reducing soil microbial activity was produced.


Subject(s)
Adaptation, Physiological/physiology , Hot Temperature , Soil Microbiology , Biomass , Carbon Dioxide/metabolism , Seasons , Sucrose/metabolism
4.
Ecol Lett ; 11(10): 1092-100, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18627408

ABSTRACT

Warming-induced release of CO2 from the large carbon (C) stores in arctic soils could accelerate climate change. However, declines in the response of soil respiration to warming in long-term experiments suggest that microbial activity acclimates to temperature, greatly reducing the potential for enhanced C losses. As reduced respiration rates with time could be equally caused by substrate depletion, evidence for thermal acclimation remains controversial. To overcome this problem, we carried out a cooling experiment with soils from arctic Sweden. If acclimation causes the reduction in soil respiration observed after experimental warming, then it should subsequently lead to an increase in respiration rates after cooling. We demonstrate that thermal acclimation did not occur following cooling. Rather, during the 90 days after cooling, a further reduction in the soil respiration rate was observed, which was only reversed by extended re-exposure to warmer temperatures. We conclude that over the time scale of a few weeks to months, warming-induced changes in the microbial community in arctic soils will amplify the instantaneous increase in the rates of CO2 production and thus enhance C losses potentially accelerating the rate of 21st century climate change.


Subject(s)
Acclimatization/physiology , Carbon Dioxide/metabolism , Soil Microbiology , Temperature , Analysis of Variance , Arctic Regions , Bacteria/metabolism , Carbon/metabolism , Ecosystem , Fungi/metabolism , Seasons , Soil/analysis , Sweden , Time Factors
5.
Ecology ; 88(7): 1611-21, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17645007

ABSTRACT

Increasing pressures on ecosystems through global climate and other land-use changes require predictive models of their consequences for vital processes such as soil carbon and nitrogen cycling. These environmental changes will undoubtedly affect soil fauna. There is sufficient evidence that soil fauna have significant effects on all of the pools and fluxes in these cycles, and soil fauna mineralize more N than microbes in some habitats. It is therefore essential that their role in the C and N cycle be understood. Here we introduce a new framework that attempts to reconcile our current understanding of the role of soil fauna within the C and N cycle with biogeochemical models and soil food web models. Using a simple stoichiometric approach to integrate our understanding of N mineralization and immobilization with the C:N ratio of substrates and faunal life history characteristics, as used in food web studies, we consider two mechanisms through which soil fauna can directly affect N cycling. First, fauna that are efficient assimilators of C and that have prey with similar C:N ratios as themselves, are likely to contribute directly to the mineral N pool. Second, fauna that are inefficient assimilators of C and that have prey with higher C:N ratios than themselves are likely to contribute most to the dissolved organic matter (DOM) pool. Different groups of fauna are likely to contribute to these two pathways. Protists and bacteria-feeding nematodes are more likely to be important for N mineralization through grazing on microbial biomass, while the effects of enchytraeids and fungal-feeding microarthropods are most likely to be important for DOM production. The model is consistent with experimental evidence and, despite its simplicity, provides a new framework in which the effects of soil fauna on pools and fluxes can be understood. Further, the model highlights our gaps in knowledge, not only for effects of soil fauna on processes, but also for understanding of the soil C and N cycle in general.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Soil , Food Chain , Models, Biological
6.
New Phytol ; 175(1): 11-28, 2007.
Article in English | MEDLINE | ID: mdl-17547663

ABSTRACT

As C(3) photosynthesis is not yet CO(2)-saturated, forests offer the possibility of enhanced growth and carbon (C) sequestration with rising atmospheric CO(2). However, at an ecosystem scale, increased photosynthetic rates are not always translated into faster tree growth, and in free air carbon enrichment (FACE) experiments with trees, the stimulation in above-ground growth often declines with time. So is tree growth C-limited? The evidence is reviewed here at three different scales. First, at the biochemical scale, the role of Rubisco is discussed by considering its evolution and role as a nitrogen (N) storage protein. Second, at the ecophysiological scale, C allocation to gain nutrients from the soil is considered and it is argued that any C limitation is only through a limitation to soil nutrient cycling. Finally, the response of forest ecosystems to rising atmospheric CO(2) concentrations is considered and evidence from FACE experiments is discussed. From the three lines of evidence we conclude that the growth of trees is not C-limited, with the key to understanding future responses to climate change being turnover of soil organic matter and nutrient cycling.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Ecosystem , Environment , Trees/physiology , Models, Biological , Photosynthesis , Plant Proteins/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Ribulose-Bisphosphate Carboxylase/metabolism , Trees/growth & development
7.
Oecologia ; 153(3): 643-52, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17497180

ABSTRACT

Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, although little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of the observed declines in SOC stocks.


Subject(s)
Betula/growth & development , Climate , Cyperaceae/growth & development , Ecosystem , Plant Roots/growth & development , Alaska , Fertilization , Soil/analysis
8.
Biol Lett ; 2(2): 286-8, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-17148384

ABSTRACT

Mosses are one of the most diverse and widespread groups of plants and often form the dominant vegetation in montane, boreal and arctic ecosystems. However, unlike higher plants, mosses lack developed root and vascular systems, which is thought to limit their access to soil nutrients. Here, we test the ability of two physiologically and taxonomically distinct moss species to take up soil- and wet deposition-derived nitrogen (N) in natural intact turfs using stable isotopic techniques (15N). Both species exhibited increased concentrations of shoot 15N when exposed to either soil- or wet deposition-derived 15N, demonstrating conclusively and for the first time, that mosses derive N from the soil. Given the broad physiological and taxonomic differences between these moss species, we suggest soil N uptake may be common among mosses, although further studies are required to test this prediction. Soil N uptake by moss species may allow them to compete for soil N in a wide range of ecosystems. Moreover, since many terrestrial ecosystems are N limited, soil N uptake by mosses may have implications for plant community structure and nutrient cycling. Finally, soil N uptake may place some moss species at greater risk from N pollution than previously appreciated.


Subject(s)
Bryophyta/physiology , Nitrogen/metabolism , Soil , Bryophyta/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism
9.
Rapid Commun Mass Spectrom ; 20(22): 3379-84, 2006.
Article in English | MEDLINE | ID: mdl-17051607

ABSTRACT

Soil surface CO2 efflux is comprised of CO2 from (i) root respiration and rhizosphere microbes and (ii) heterotrophic respiration from the breakdown of soil organic matter (SOM). This efflux may be partitioned between these sources using delta13C measurements. To achieve this, continuous flow isotope ratio mass spectrometry can be used and, in conjunction with 10 mL septum-capped vials, large numbers of samples may be analysed using a Finnigan MAT Delta(plus)XP interfaced to a Gas Bench II. Here we describe a number of advances to facilitate such work, including: (i) a technique for monitoring mass spectrometer performance, (ii) improvements to sample storage, and (iii) a gas-handling system for incubating and sampling the CO2 derived from roots and soils. Mass spectrometer performance was monitored using an automated refillable vial. Compressed air analysed with this system had mean delta13C of -9.61 +/- 0.16 per thousand (+/- 1sigma, n = 28) collected over four runs. Heating the butyl rubber septa used to seal the vials at 105 degrees C for 12 h improved the sample storage. After air transportation over 12 days, the isotope composition of the CO2 at ambient concentrations was unchanged (before: -35.2 +/- 0.10 per thousand, n = 4; after: -35.3 +/- 0.10 per thousand, n = 15); without heat treatment of the septa the CO2 became slightly enriched (-35.0 +/- 0.14 per thousand, n = 15). The linearity of the Gas Bench II was found to decline above 8000 micromol CO2 mol(-1). To stay within a linear range and to allow the incubation of soil and root material we describe a gas-handling system based around a peristaltic pump. Finally, we demonstrate these methods by growing a C-4 grass (Guinea grass, Panicum maximum Jacq.) in a C-3 soil. Root respiration was found to contribute between 5 and 22% to the soil surface CO2 efflux. These methodologies will facilitate experiments aimed at measuring the isotopic composition of soil-derived CO2 across a range of ecological applications.

10.
Oecologia ; 135(3): 414-21, 2003 May.
Article in English | MEDLINE | ID: mdl-12721832

ABSTRACT

This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.


Subject(s)
Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Photosynthesis , Biomass , Ecosystem , Environmental Monitoring , Gases , Nitrogen/metabolism , Phosphorus/metabolism , Plant Physiological Phenomena , Spacecraft
SELECTION OF CITATIONS
SEARCH DETAIL
...