Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 23(1): 327, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463178

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most severe complications of SARS-CoV-2 infection. Non-Invasive Respiratory Support (NRS) as Continuous Positive Airway Pressure (CPAP) and/or Non-Invasive Ventilation (NIV) has been proven as effective in the management of SARS-CoV-2-related ARDS. However, the most appropriate timing for start NRS is unknown. METHODS: We conducted a prospective pilot study including all consecutive patients who developed moderate SARS-CoV-2-related ARDS during hospitalization. Patients were randomly divided into two intervention groups according to ARDS severity (assessed by PaO2/FiO2-P/F) at NRS beginning: group A started CPAP/NIV when P/F was ≤ 200 and group B started CPAP/NIV when P/F was ≤ 150. Eligible patients who did not give their consent to CPAP/NIV until the severe stage of ARDS and started non-invasive treatment when P/F ≤ 100 (group C) was added. The considered outcomes were in-hospital mortality, oro-tracheal intubation (OTI) and days of hospitalization. RESULTS: Among 146 eligible patients, 29 underwent CPAP/NIV when P/F was ≤ 200 (Group A), 68 when P/F was ≤ 150 (Group B) and 31 patients agreed to non-invasive treatment only when P/F was ≤ 100 (Group C). Starting NRS at P/F level between 151 and 200 did not results in significant differences in the outcomes as compared to treatment starting with P/F ranging 101-150. Conversely, patients undergone CPAP/NIV in a moderate stage (P/F 101-200) had a significantly lower in-hospital mortality rate (13.4 vs. 29.0%, p = 0.044) and hospitalization length (14 vs. 15 days, p = 0.038) than those in the severe stage (P/F ≤ 100). Age and need for continuous ventilation were independent predictors of CPAP/NIV failure. CONCLUSIONS: Starting CPAP/NIV in patients with SARS-CoV-2-related ARDS in moderate stage (100 > P/F ≤ 200) is associated to a reduction of both in-hospital mortality and hospitalization length compared to the severe stage (P/F ≤ 100). Starting CPAP/NIV with a P/F > 150 does not appear to be of clinical utility.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Pilot Projects , Prospective Studies , COVID-19/therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy
2.
Microb Drug Resist ; 27(9): 1167-1175, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33600262

ABSTRACT

Background: The aim of this study was to assess the drivers of multidrug-resistant (MDR) bacterial infection development in coronavirus disease 2019 (COVID-19) and its impact on patient outcome. Methods: Retrospective analysis on data from 32 consecutive patients with COVID-19, admitted to our intensive care unit (ICU) from March to May 2020. Outcomes considered were MDR infection and ICU mortality. Results: Fifty percent of patients developed an MDR infection during ICU stay after a median time of 8 [4-11] days. Most common MDR pathogens were carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, causing bloodstream infections and pneumonia. MDR infections were linked to a higher length of ICU stay (p = 0.002), steroid therapy (p = 0.011), and associated with a lower ICU mortality (odds ratio: 0.439, 95% confidence interval: 0.251-0.763; p < 0.001). Low-dose aspirin intake was associated with both MDR infection (p = 0.043) and survival (p = 0.015). Among MDR patients, mortality was related with piperacillin-tazobactam use (p = 0.035) and an earlier onset of MDR infection (p = 0.042). Conclusions: MDR infections were a common complication in critically ill COVID-19 patients at our center. MDR risk was higher among those dwelling longer in the ICU and receiving steroids. However, MDR infections were not associated with a worse outcome.


Subject(s)
Acinetobacter Infections/mortality , COVID-19/mortality , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/mortality , Opportunistic Infections/mortality , Pneumonia/mortality , SARS-CoV-2/pathogenicity , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter Infections/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/pathogenicity , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Aspirin/therapeutic use , COVID-19/microbiology , COVID-19/virology , Carbapenems/therapeutic use , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Length of Stay/statistics & numerical data , Male , Middle Aged , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Opportunistic Infections/virology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia/drug therapy , Pneumonia/microbiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Steroids/therapeutic use , Survival Analysis , Treatment Outcome , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...