Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5158, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620305

ABSTRACT

Hydroxysteroid 17-beta-dehydrogenase 13 (HSD17B13) is a hepatic lipid droplet-associated enzyme that is upregulated in patients with non-alcoholic fatty liver disease. Recently, there have been several reports that predicted loss of function variants in HSD17B13 protect against the progression of steatosis to non-alcoholic steatohepatitis with fibrosis and hepatocellular carcinoma. Here we report crystal structures of full length HSD17B13 in complex with its NAD+ cofactor, and with lipid/detergent molecules and small molecule inhibitors from two distinct series in the ligand binding pocket. These structures provide insights into a mechanism for lipid droplet-associated proteins anchoring to membranes as well as a basis for HSD17B13 variants disrupting function. Two series of inhibitors interact with the active site residues and the bound cofactor similarly, yet they occupy different paths leading to the active site. These structures provide ideas for structure-based design of inhibitors that may be used in the treatment of liver disease.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Lipid Droplet Associated Proteins , Lipids , 17-Hydroxysteroid Dehydrogenases/chemistry
2.
J Biol Chem ; 299(3): 102959, 2023 03.
Article in English | MEDLINE | ID: mdl-36717078

ABSTRACT

The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide) , Angiotensin Receptor Antagonists , Humans , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Amino Acids, Branched-Chain/metabolism , Angiotensin Receptor Antagonists/pharmacology , Multienzyme Complexes/metabolism , Heart Failure , Hypertension
3.
Methods Mol Biol ; 1805: 93-101, 2018.
Article in English | MEDLINE | ID: mdl-29971714

ABSTRACT

Throughout the cell, motor proteins work together to drive numerous molecular processes and functions. For example, ensembles of myosin motors collectively transport vesicles and organelles, maintain membrane homeostasis, and drive muscle contraction. Studying these motors in groups has become increasingly important with work demonstrating the emergence of ensemble behavior distinct from individual motor behavior. One powerful technique that has been used in the last decade is DNA nanotechnology, which provides precise control over spacing and organization of patterned motor proteins. Until recently, however, most studies combining DNA nanostructures and molecular motors have been confined to discrete DNA structures with limited attachment points for motor proteins. In this chapter, we describe a new approach for making synthetic motor filaments using DNA nanotubes. We present methods for preparing myosin VI-labeled nanotubes and testing these nanotubes using a general in vitro motility setup. Overall, these nanotubes can easily be used to study other large ensembles of molecular motors, such as muscle myosin or ciliary dynein, both proteins that work in large motor ensembles to drive key cellular functions.


Subject(s)
DNA/chemistry , Myosins/metabolism , Nanotechnology/methods , Nanotubes/chemistry , Animals , Data Analysis , Swine
4.
Proc Natl Acad Sci U S A ; 114(51): 13453-13458, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29208709

ABSTRACT

Phosphorylation is a major regulator of protein interactions; however, the mechanisms by which regulation occurs are not well understood. Here we identify a salt-bridge competition or "theft" mechanism that enables a phospho-triggered swap of protein partners by Raf Kinase Inhibitory Protein (RKIP). RKIP transitions from inhibiting Raf-1 to inhibiting G-protein-coupled receptor kinase 2 upon phosphorylation, thereby bridging MAP kinase and G-Protein-Coupled Receptor signaling. NMR and crystallography indicate that a phosphoserine, but not a phosphomimetic, competes for a lysine from a preexisting salt bridge, initiating a partial unfolding event and promoting new protein interactions. Structural elements underlying the theft occurred early in evolution and are found in 10% of homo-oligomers and 30% of hetero-oligomers including Bax, Troponin C, and Early Endosome Antigen 1. In contrast to a direct recognition of phosphorylated residues by binding partners, the salt-bridge theft mechanism represents a facile strategy for promoting or disrupting protein interactions using solvent-accessible residues, and it can provide additional specificity at protein interfaces through local unfolding or conformational change.


Subject(s)
Conserved Sequence , Protein Interaction Maps , Protein Processing, Post-Translational , Amino Acid Substitution , Animals , Evolution, Molecular , Humans , Lysine/genetics , Lysine/metabolism , Phosphatidylethanolamine Binding Protein/chemistry , Phosphatidylethanolamine Binding Protein/genetics , Phosphatidylethanolamine Binding Protein/metabolism , Phosphorylation , Protein Binding , Serine/genetics , Serine/metabolism , Troponin C/chemistry , Troponin C/genetics , Troponin C/metabolism , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , bcl-2-Associated X Protein/chemistry , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
J Biol Chem ; 292(39): 16300-16309, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28821615

ABSTRACT

Protein kinase Cα (PKCα) belongs to the family of AGC kinases that phosphorylate multiple peptide substrates. Although the consensus sequence motif has been identified and used to explain substrate specificity for PKCα, it does not inform the structural basis of substrate-binding and kinase activity for diverse substrates phosphorylated by this kinase. The transient, dynamic, and unstructured nature of this protein-protein interaction has limited structural mapping of kinase-substrate interfaces. Here, using multiscale MD simulation-based predictions and FRET sensor-based experiments, we investigated the conformational dynamics of the kinase-substrate interface. We found that the binding strength of the kinase-substrate interaction is primarily determined by long-range columbic interactions between basic (Arg/Lys) residues located N-terminally to the phosphorylated Ser/Thr residues in the substrate and by an acidic patch in the kinase catalytic domain. Kinase activity stemmed from conformational flexibility in the region C-terminal to the phosphorylated Ser/Thr residues. Flexibility of the substrate-kinase interaction enabled an Arg/Lys two to three amino acids C-terminal to the phosphorylated Ser/Thr to prime a catalytically active conformation, facilitating phosphoryl transfer to the substrate. The structural mechanisms determining substrate binding and catalytic activity formed the basis of diverse binding affinities and kinase activities of PKCα for 14 substrates with varying degrees of sequence conservation. Our findings provide insight into the dynamic properties of the kinase-substrate interaction that govern substrate binding and turnover. Moreover, this study establishes a modeling and experimental method to elucidate the structural dynamics underlying substrate selectivity among eukaryotic kinases.


Subject(s)
Models, Molecular , Protein Kinase C-alpha/metabolism , Amino Acid Substitution , Animals , Biocatalysis , Catalytic Domain , Computational Biology , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mutation , Phosphorylation , Protein Conformation , Protein Engineering/methods , Protein Interaction Domains and Motifs , Protein Kinase C-alpha/chemistry , Protein Kinase C-alpha/genetics , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Structural Homology, Protein
6.
J Cell Biol ; 216(9): 2657-2667, 2017 09 04.
Article in English | MEDLINE | ID: mdl-28655757

ABSTRACT

Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Actomyosin/metabolism , Cytokinesis , Schizosaccharomyces/metabolism , Fixatives/chemistry , Formaldehyde/chemistry , Homeostasis , Microscopy, Confocal , Microscopy, Video , Schizosaccharomyces/genetics , Time Factors , Time-Lapse Imaging
7.
Proc Natl Acad Sci U S A ; 114(14): 3756-3761, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28325873

ABSTRACT

Although individual G-protein-coupled receptors (GPCRs) are known to activate one or more G proteins, the GPCR-G-protein interaction is viewed as a bimolecular event involving the formation of a ternary ligand-GPCR-G-protein complex. Here, we present evidence that individual GPCR-G-protein interactions can reinforce each other to enhance signaling through canonical downstream second messengers, a phenomenon we term "GPCR priming." Specifically, we find that the presence of noncognate Gq protein enhances cAMP stimulated by two Gs-coupled receptors, ß2-adrenergic receptor (ß2-AR) and D1 dopamine receptor (D1-R). Reciprocally, Gs enhances IP1 through vasopressin receptor (V1A-R) but not α1 adrenergic receptor (α1-AR), suggesting that GPCR priming is a receptor-specific phenomenon. The C terminus of either the Gαs or Gαq subunit is sufficient to enhance Gα subunit activation and cAMP levels. Interaction of Gαs or Gαq C termini with the GPCR increases signaling potency, suggesting an altered GPCR conformation as the underlying basis for GPCR priming. We propose three parallel mechanisms involving (i) sequential G-protein interactions at the cognate site, (ii) G-protein interactions at distinct allosteric and cognate sites on the GPCR, and (iii) asymmetric GPCR dimers. GPCR priming suggests another layer of regulation in the classic GPCR ternary-complex model, with broad implications for the multiplicity inherent in signaling networks.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Allosteric Site , Animals , Binding Sites , Cyclic AMP/metabolism , HEK293 Cells , Humans , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Second Messenger Systems , Sf9 Cells
8.
J Biol Chem ; 292(7): 2873-2880, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28049730

ABSTRACT

Resolving the conformational dynamics of large multidomain proteins has proven to be a significant challenge. Here we use a variety of techniques to dissect the roles of individual protein kinase Cα (PKCα) regulatory domains in maintaining catalytic autoinhibition. We find that whereas the pseudosubstrate domain is necessary for autoinhibition it is not sufficient. Instead, each regulatory domain (C1a, C1b, and C2) appears to strengthen the pseudosubstrate-catalytic domain interaction in a nucleotide-dependent manner. The pseudosubstrate and C1a domains, however, are minimally essential for maintaining the inactivated state. Furthermore, disrupting known interactions between the C1a and other regulatory domains releases the autoinhibited interaction and increases basal activity. Modulating this interaction between the catalytic and regulatory domains reveals a direct correlation between autoinhibition and membrane translocation following PKC activation.


Subject(s)
Protein Kinase C-alpha/metabolism , Animals , Catalysis , Catalytic Domain , Fluorescence Resonance Energy Transfer , Humans , Mutation , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/chemistry , Protein Transport , Sf9 Cells , Substrate Specificity
9.
PLoS One ; 11(10): e0162331, 2016.
Article in English | MEDLINE | ID: mdl-27706148

ABSTRACT

Protein kinase C α (PKCα) is a nodal regulator in several intracellular signaling networks. PKCα is composed of modular domains that interact with each other to dynamically regulate spatial-temporal function. We find that PKCα specifically, rapidly and reversibly self-assembles in the presence of calcium in vitro. This phenomenon is dependent on, and can be modulated by an intramolecular interaction between the C1a and C2 protein domains of PKCα. Next, we monitor self-assembly of PKC-mCitrine fusion proteins using time-resolved and steady-state homoFRET. HomoFRET between full-length PKCα molecules is observed when in solution with both calcium and liposomes containing either diacylglycerol (DAG) or phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Surprisingly, the C2 domain is sufficient to cluster on liposomes containing PI(4,5)P2, indicating the C1a domain is not required for self-assembly in this context. We conclude that three distinct clustered states of PKCα can be formed depending on what combination of cofactors are bound, but Ca2+ is minimally required and sufficient for clustering.


Subject(s)
Calcium/metabolism , Protein Kinase C-alpha/metabolism , Animals , CHO Cells , Calcium/chemistry , Chromatography, Gel , Cricetinae , Cricetulus , Diglycerides/chemistry , Diglycerides/metabolism , Dynamic Light Scattering , Fluorescence Resonance Energy Transfer , Humans , Liposomes/chemistry , Liposomes/metabolism , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Domains , Protein Folding , Protein Kinase C-alpha/chemistry , Protein Kinase C-alpha/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sf9 Cells
10.
J Biol Chem ; 291(42): 21963-21970, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27555323

ABSTRACT

The overlapping network of kinase-substrate interactions provides exquisite specificity in cell signaling pathways, but also presents challenges to our ability to understand the mechanistic basis of biological processes. Efforts to dissect kinase-substrate interactions have been particularly limited by their inherently transient nature. Here, we use a library of FRET sensors to monitor these transient complexes, specifically examining weak interactions between the catalytic domain of protein kinase Cα and 14 substrate peptides. Combining results from this assay platform with those from standard kinase activity assays yields four novel insights into the kinase-substrate interaction. First, preferential binding of non-phosphorylated versus phosphorylated substrates leads to enhanced kinase-specific activity. Second, kinase-specific activity is inversely correlated with substrate binding affinity. Third, high affinity substrates can suppress phosphorylation of their low affinity counterparts. Finally, the substrate-competitive inhibitor bisindolylmaleimide I displaces low affinity substrates more potently leading to substrate selective inhibition of kinase activity. Overall, our approach complements existing structural and biophysical approaches to provide generalizable insights into the regulation of kinase activity.


Subject(s)
Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase C-alpha/chemistry , Protein Kinase Inhibitors/chemistry , Animals , Fluorescence Resonance Energy Transfer , Humans , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Sf9 Cells , Spodoptera , Substrate Specificity
11.
J Exp Biol ; 219(Pt 2): 161-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26792326

ABSTRACT

Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human ß-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human ß-cardiac myosin. We are using a recombinantly expressed human ß-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Mutation/genetics , Ventricular Myosins/genetics , Biomechanical Phenomena/genetics , Humans , Models, Biological
12.
Sci Adv ; 1(9): e1500511, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26601291

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human ß-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human ß-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human ß-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca(2+)-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human ß-cardiac myosin contractility as a result of the R403Q mutation.

13.
BMC Med Genet ; 16: 97, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26498512

ABSTRACT

BACKGROUND: As next generation sequencing for the genetic diagnosis of cardiovascular disorders becomes more widely used, establishing causality for putative disease causing variants becomes increasingly relevant. Diseases of the cardiac sarcomere provide a particular challenge in this regard because of the complexity of assaying the effect of genetic variants in human cardiac contractile proteins. RESULTS: In this study we identified a novel variant R205Q in the cardiac troponin T gene (TNNT2). Carriers of the variant allele exhibited increased chamber volumes associated with decreased left ventricular ejection fraction. To clarify the causal role of this variant, we generated recombinant variant human protein and examined its calcium kinetics as well as the maximally activated ADP release of human ß-cardiac myosin with regulated thin filaments containing the mutant troponin T. We found that the R205Q mutation significantly decreased the calcium sensitivity of the thin filament by altering the effective calcium dissociation kinetics. CONCLUSIONS: The development of moderate throughput post-genomic assays is an essential step in the realization of the potential of next generation sequencing. Although technically challenging, biochemical and functional assays of human cardiac contractile proteins of the thin filament can be achieved and provide an orthogonal source of information to inform the question of causality for individual variants.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Mutation , Troponin T/genetics , Troponin T/metabolism , Adult , Cardiac Myosins/genetics , Cardiac Myosins/metabolism , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Humans , In Vitro Techniques , Male , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stroke Volume
14.
Elife ; 42015 Mar 04.
Article in English | MEDLINE | ID: mdl-25738229

ABSTRACT

Myosin V and VI are antagonistic motors that cohabit membrane vesicles in cells. A systematic study of their collective function, however, is lacking and forms the focus of this study. We functionally reconstitute a two-dimensional actin-myosin interface using myosin V and VI precisely patterned on DNA nanostructures, in combination with a model keratocyte actin meshwork. While scaffolds display solely unidirectional movement, their directional flux is modulated by both actin architecture and the structural properties of the myosin lever arm. This directional flux can be finely-tuned by the relative number of myosin V and VI motors on each scaffold. Pairing computation with experimental observations suggests that the ratio of motor stall forces is a key determinant of the observed competitive outcomes. Overall, our study demonstrates an elegant mechanism for sorting of membrane cargo using equally matched antagonistic motors, simply by modulating the relative number of engagement sites for each motor type.


Subject(s)
Actin Cytoskeleton/chemistry , Molecular Motor Proteins/chemistry , Myosin Heavy Chains/chemistry , Myosin Type V/chemistry , Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Animals , Chickens , Cichlids/metabolism , Cytoplasmic Vesicles/metabolism , DNA/chemistry , DNA/metabolism , Epidermal Cells , Epidermis/metabolism , Models, Molecular , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Nanostructures/chemistry , Nucleic Acid Conformation , Protein Conformation , Protein Transport , Sf9 Cells , Sus scrofa
15.
J Biol Chem ; 290(11): 7003-15, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25548289

ABSTRACT

The most frequent known causes of primary cardiomyopathies are mutations in the genes encoding sarcomeric proteins. Among those are 30 single-residue mutations in TPM1, the gene encoding α-tropomyosin. We examined seven mutant tropomyosins, E62Q, D84N, I172T, L185R, S215L, D230N, and M281T, that were chosen based on their clinical severity and locations along the molecule. The goal of our study was to determine how the biochemical characteristics of each of these mutant proteins are altered, which in turn could provide a structural rationale for treatment of the cardiomyopathies they produce. Measurements of Ca(2+) sensitivity of human ß-cardiac myosin ATPase activity are consistent with the hypothesis that hypertrophic cardiomyopathies are hypersensitive to Ca(2+) activation, and dilated cardiomyopathies are hyposensitive. We also report correlations between ATPase activity at maximum Ca(2+) concentrations and conformational changes in TnC measured using a fluorescent probe, which provide evidence that different substitutions perturb the structure of the regulatory complex in different ways. Moreover, we observed changes in protein stability and protein-protein interactions in these mutants. Our results suggest multiple mechanistic pathways to hypertrophic and dilated cardiomyopathies. Finally, we examined a computationally designed mutant, E181K, that is hypersensitive, confirming predictions derived from in silico structural analysis.


Subject(s)
Actins/metabolism , Calcium/metabolism , Cardiomyopathies/genetics , Point Mutation , Tropomyosin/genetics , Tropomyosin/metabolism , Adenosine Triphosphatases/metabolism , Cardiomyopathies/metabolism , Humans , Models, Molecular , Myosins/metabolism , Protein Stability , Tropomyosin/chemistry
16.
PLoS One ; 8(12): e83403, 2013.
Article in English | MEDLINE | ID: mdl-24367593

ABSTRACT

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human ß-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca(2+)-activated ADP release rates involving the thin filament human ß-cardiac myosin complex. Changes in Ca(2+) sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca(2+) induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human ß-cardiac myosin.


Subject(s)
Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Calcium/metabolism , Cardiomyopathies/genetics , Mutation , Troponin T/genetics , Ventricular Myosins/metabolism , Adult , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Cardiomyopathy, Hypertrophic/pathology , Humans , Kinetics , Models, Molecular , Myosin Subfragments/metabolism , Protein Structure, Secondary , Tropomyosin/metabolism , Troponin T/chemistry , Troponin T/metabolism
17.
Proc Natl Acad Sci U S A ; 110(31): 12607-12, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23798412

ABSTRACT

Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including ß-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human ß-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human ß-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human ß-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle.


Subject(s)
Cardiac Myosins/metabolism , Cardiomegaly/metabolism , Cell Movement , Genetic Diseases, Inborn/metabolism , Mutation, Missense , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Amino Acid Substitution , Animals , Cardiac Myosins/genetics , Cardiomegaly/genetics , Cardiomegaly/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , HEK293 Cells , Humans , Mice , Myocardium/pathology , Myosin Heavy Chains/genetics , Myosin Light Chains/genetics , Myosin Light Chains/metabolism , Optical Tweezers
18.
Protein Sci ; 19(10): 2001-5, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20669185

ABSTRACT

Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.


Subject(s)
Arginine/chemistry , Glutamic Acid/chemistry , Lysine/chemistry , Oligopeptides/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Circular Dichroism
19.
Biochem J ; 423(3): 353-61, 2009 Oct 12.
Article in English | MEDLINE | ID: mdl-19698083

ABSTRACT

TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide-MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax(11-19)] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a 'polar hydrophobicity' mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.


Subject(s)
Fluorine/metabolism , Gene Products, tax/metabolism , HLA Antigens/metabolism , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Fluorine/chemistry , Fluorine/immunology , Gene Products, tax/chemistry , Gene Products, tax/immunology , HLA Antigens/chemistry , HLA Antigens/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Peptides/immunology , Protein Binding/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Viral Vaccines/chemistry , Viral Vaccines/immunology , Viral Vaccines/metabolism
20.
Immunity ; 31(6): 885-96, 2009 Dec 18.
Article in English | MEDLINE | ID: mdl-20064447

ABSTRACT

T cell-mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The alphabeta TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential "tuning" of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system.


Subject(s)
Antigen Presentation , HLA-A2 Antigen/immunology , Intracellular Signaling Peptides and Proteins/immunology , Protein Serine-Threonine Kinases/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Saccharomyces cerevisiae Proteins/immunology , Amino Acid Sequence , Cross Reactions , Crystallography, X-Ray , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Oligopeptides/chemistry , Oligopeptides/immunology , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...