Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 113: 104082, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37418909

ABSTRACT

In high-risk environments, fast and accurate responses to warning systems are essential to efficiently handle emergency situations. The aim of the present study was twofold: 1) investigating whether hand action videos (i.e., gesture alarms) trigger faster and more accurate responses than text alarm messages (i.e., written alarms), especially when mental workload (MWL) is high; and 2) investigating the brain activity in response to both types of alarms as a function of MWL. Regardless of MWL, participants (N = 28) were found to be both faster and more accurate when responding to gesture alarms than to written alarms. Brain electrophysiological results suggest that this greater efficiency might be due to a facilitation of the action execution, reflected by the decrease in mu and beta power observed around the response time window observed at C3 and C4 electrodes. These results suggest that gesture alarms may improve operators' performances in emergency situations.


Subject(s)
Clinical Alarms , Gestures , Humans , Reaction Time , Workload
2.
Sci Data ; 10(1): 85, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765121

ABSTRACT

Brain-Computer Interfaces and especially passive Brain-Computer interfaces (pBCI), with their ability to estimate and monitor user mental states, are receiving increasing attention from both the fundamental research and the applied research and development communities. Testing new pipelines and benchmarking classifiers and feature extraction algorithms is central to further research within this domain. Unfortunately, data sharing in pBCI research is still scarce. The COG-BCI database encompasses the recordings of 29 participants over 3 separate sessions with 4 different tasks (MATB, N-Back, PVT, Flanker) designed to elicit different mental states, for a total of over 100 hours of open EEG data. This dataset was validated on a subjective, behavioral and physiological level, to ensure its usefulness to the pBCI community. Furthermore, a proof of concept is given with an example of mental workload estimation pipeline and results, to ensure that the data can be used for the design and evaluation of pBCI pipelines. This body of work presents a large effort to promote the use of pBCIs in an open science framework.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Algorithms , Cognition
3.
Psychophysiology ; 60(2): e14171, 2023 02.
Article in English | MEDLINE | ID: mdl-36106765

ABSTRACT

Supervision of automated systems is an ubiquitous aspect of most of our everyday life activities which is even more necessary in high risk industries (aeronautics, power plants, etc.). Performance monitoring related to our own error making has been widely studied. Here we propose to assess the neurofunctional correlates of system error detection. We used an aviation-based conflict avoidance simulator with a 40% error-rate and recorded the electroencephalographic activity of participants while they were supervising it. Neural dynamics related to the supervision of system's correct and erroneous responses were assessed in the time and time-frequency domains to address the dynamics of the error detection process in this environment. Two levels of perceptual difficulty were introduced to assess their effect on system's error detection-related evoked activity. Using a robust cluster-based permutation test, we observed a lower widespread evoked activity in the time domain for errors compared to correct responses detection, as well as a higher theta-band activity in the time-frequency domain dissociating the detection of erroneous from that of correct system responses. We also showed a significant effect of difficulty on time-domain evoked activity, and of the phase of the experiment on spectral activity: a decrease in early theta and alpha at the end of the experiment, as well as interaction effects in theta and alpha frequency bands. These results improve our understanding of the brain dynamics of performance monitoring activity in closer-to-real-life settings and are a promising avenue for the detection of error-related components in ecological and dynamic tasks.


Subject(s)
Brain , Electroencephalography , Humans , Brain/physiology , Theta Rhythm/physiology
4.
Neuroimage ; 257: 119056, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35283287

ABSTRACT

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Subject(s)
Electroencephalography , Humans
5.
Front Neuroergon ; 3: 838342, 2022.
Article in English | MEDLINE | ID: mdl-38235453

ABSTRACT

As is the case in several research domains, data sharing is still scarce in the field of Brain-Computer Interfaces (BCI), and particularly in that of passive BCIs-i.e., systems that enable implicit interaction or task adaptation based on a user's mental state(s) estimated from brain measures. Moreover, research in this field is currently hindered by a major challenge, which is tackling brain signal variability such as cross-session variability. Hence, with a view to develop good research practices in this field and to enable the whole community to join forces in working on cross-session estimation, we created the first passive brain-computer interface competition on cross-session workload estimation. This competition was part of the 3rd International Neuroergonomics conference. The data were electroencephalographic recordings acquired from 15 volunteers (6 females; average 25 y.o.) who performed 3 sessions-separated by 7 days-of the Multi-Attribute Task Battery-II (MATB-II) with 3 levels of difficulty per session (pseudo-randomized order). The data -training and testing sets-were made publicly available on Zenodo along with Matlab and Python toy code (https://doi.org/10.5281/zenodo.5055046). To this day, the database was downloaded more than 900 times (unique downloads of all version on the 10th of December 2021: 911). Eleven teams from 3 continents (31 participants) submitted their work. The best achieving processing pipelines included a Riemannian geometry-based method. Although better than the adjusted chance level (38% with an α at 0.05 for a 3-class classification problem), the results still remained under 60% of accuracy. These results clearly underline the real challenge that is cross-session estimation. Moreover, they confirmed once more the robustness and effectiveness of Riemannian methods for BCI. On the contrary, chance level results were obtained by one third of the methods-4 teams- based on Deep Learning. These methods have not demonstrated superior results in this contest compared to traditional methods, which may be due to severe overfitting. Yet this competition is the first step toward a joint effort to tackle BCI variability and to promote good research practices including reproducibility.

6.
Front Neuroergon ; 2: 802486, 2021.
Article in English | MEDLINE | ID: mdl-38235232

ABSTRACT

Transfer from experiments in the laboratory to real-life tasks is challenging due notably to the inability to reproduce the complexity of multitasking dynamic everyday life situations in a standardized lab condition and to the bulkiness and invasiveness of recording systems preventing participants from moving freely and disturbing the environment. In this study, we used a motion flight simulator to induce inattentional deafness to auditory alarms, a cognitive difficulty arising in complex environments. In addition, we assessed the possibility of two low-density EEG systems a solid gel-based electrode Enobio (Neuroelectrics, Barcelona, Spain) and a gel-based cEEGrid (TMSi, Oldenzaal, Netherlands) to record and classify brain activity associated with inattentional deafness (misses vs. hits to odd sounds) with a small pool of expert participants. In addition to inducing inattentional deafness (missing auditory alarms) at much higher rates than with usual lab tasks (34.7% compared to the usual 5%), we observed typical inattentional deafness-related activity in the time domain but also in the frequency and time-frequency domains with both systems. Finally, a classifier based on Riemannian Geometry principles allowed us to obtain more than 70% of single-trial classification accuracy for both mobile EEG, and up to 71.5% for the cEEGrid (TMSi, Oldenzaal, Netherlands). These results open promising avenues toward detecting cognitive failures in real-life situations, such as real flight.

7.
Brain Res ; 1704: 196-206, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30300637

ABSTRACT

Performance monitoring is an amply studied function, since it is of major importance in carrying out actions in our everyday life. No consensus has been reached on the functional role and the relationship between each event-related potential (ERP) characterizing this function. In this study, we used a modified version of the flanker task, measuring the impact of task difficulty on the amplitudes of response-locked and feedback-locked performance monitoring ERPs in a single trial. We observed a functional differentiation between fronto-central (ERN/CRN and FRN) and centro-parietal (Pe/Pc and P300) components: the former seem to be only sensitive to accuracy, whereas the latter seem to be mainly modulated by task difficulty. The use of a surface Laplacian transformation, estimating current source density, on our data also supported an effect of difficulty on centro-parietal response-locked and feedback-locked ERPs. This technique allowed the spatial resolution to be improved and provided clarity, associated with the difficulty manipulation, on the activity of response-locked and feedback-locked performance monitoring ERPs.


Subject(s)
Brain/physiology , Electroencephalography , Evoked Potentials/physiology , Adult , Female , Humans , Male , Neuropsychological Tests , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
8.
Neuroimage ; 186: 266-277, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30423428

ABSTRACT

Performance monitoring is a critical process which allows us to both learn from our own errors, and also interact with other human beings. However, our increasingly automated world requires us to interact more and more with automated systems, especially in risky environments. The present EEG study aimed at investigating and comparing the neuro-functional correlates associated with performance monitoring of an automated system and a human agent using a vertically-oriented arrowhead version of the flanker task. Given the influence of task difficulty on performance monitoring, two levels of difficulty were considered in order to assess their impact on supervision activity. A large N2-P3 complex in fronto-central regions was observed for both human agent error detection and system error detection during supervision. Using a cluster-based permutation analysis, a significantly decreased P3-like component was found for system compared to human agent error detection. This variation is in line with various psychosocial behavioral studies showing a difference between human-human and human-machine interactions, even though it was not clearly anticipated. Finally, the activity observed during error detection was significantly reduced in the difficult condition compared to the easy one, for both system and human agent supervision. Overall, this study is a first step towards the characterization of the neurophysiological correlates underlying system supervision, and a better understanding of their evolution in more complex environments. To go further, these results need to be replicated in other experiments with various paradigms to assess the robustness of the pattern and decrease during system supervision.


Subject(s)
Brain/physiology , Evoked Potentials , Interpersonal Relations , Psychomotor Performance , Adult , Electroencephalography , Feedback, Psychological , Female , Humans , Male , Neuropsychological Tests , User-Computer Interface
9.
Front Hum Neurosci ; 11: 360, 2017.
Article in English | MEDLINE | ID: mdl-28744209

ABSTRACT

Nowadays, automation is present in every aspect of our daily life and has some benefits. Nonetheless, empirical data suggest that traditional automation has many negative performance and safety consequences as it changed task performers into task supervisors. In this context, we propose to use recent insights into the anatomical and neurophysiological substrates of action monitoring in humans, to help further characterize performance monitoring during system supervision. Error monitoring is critical for humans to learn from the consequences of their actions. A wide variety of studies have shown that the error monitoring system is involved not only in our own errors, but also in the errors of others. We hypothesize that the neurobiological correlates of the self-performance monitoring activity can be applied to system supervision. At a larger scale, a better understanding of system supervision may allow its negative effects to be anticipated or even countered. This review is divided into three main parts. First, we assess the neurophysiological correlates of self-performance monitoring and their characteristics during error execution. Then, we extend these results to include performance monitoring and error observation of others or of systems. Finally, we provide further directions in the study of system supervision and assess the limits preventing us from studying a well-known phenomenon: the Out-Of-the-Loop (OOL) performance problem.

SELECTION OF CITATIONS
SEARCH DETAIL
...