Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15408, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965271

ABSTRACT

Chemosensory impairment is an outstanding symptom of SARS-CoV-2 infections. We hypothesized that measured sensory impairments are accompanied by transcriptomic changes in the foliate papillae area of the tongue. Hospital personnel with known SARS-CoV-2 immunoglobulin G (IgG) status completed questionnaires on sensory perception (n = 158). A subcohort of n = 141 participated in forced choice taste tests, and n = 43 participants consented to donate tongue swabs of the foliate papillae area for whole transcriptome analysis. The study included four groups of participants differing in IgG levels (≥ 10 AU/mL = IgG+; < 10 AU/mL = IgG-) and self-reported sensory impairment (SSI±). IgG+ subjects not detecting metallic taste had higher IgG+ levels than IgG+ participants detecting iron gluconate (p = 0.03). Smell perception was the most impaired biological process in the transcriptome data from IgG+/SSI+ participants subjected to gene ontology enrichment. IgG+/SSI+ subjects demonstrated lower expression levels of 166 olfactory receptors (OR) and 9 taste associated receptors (TAS) of which OR1A2, OR2J2, OR1A1, OR5K1 and OR1G1, as well as TAS2R7 are linked to metallic perception. The question raised by this study is whether odorant receptors on the tongue (i) might play a role in metal sensation, and (ii) are potential targets for virus-initiated sensory impairments, which needs to be investigated in future functional studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Tongue , Transcriptome , Humans , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , Male , Female , Adult , Middle Aged , Tongue/metabolism , Tongue/virology , Tongue/pathology , Immunoglobulin G , Metals/metabolism , Taste Buds/metabolism , Taste Perception/genetics , Taste , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Perception
2.
Anal Chem ; 96(6): 2378-2386, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38285499

ABSTRACT

Nucleic acids attached to electrically conductive surfaces are very frequently used platforms for sensing and analyte detection as well as for imaging. Synthesizing DNA on these uncommon substrates and preserving the conductive layer is challenging as this coating tends to be damaged by the repeated use of iodine and water, which is the standard oxidizing medium following phosphoramidite coupling. Here, we thoroughly investigate the use of camphorsulfonyl oxaziridine (CSO), a nonaqueous alternative to I2/H2O, for the synthesis of DNA microarrays in situ. We find that CSO performs equally well in producing high hybridization signals on glass microscope slides, and CSO also protects the conductive layer on gold and indium tin oxide (ITO)-coated slides. DNA synthesis on conductive substrates with CSO oxidation yields microarrays of quality approaching that of conventional glass with intact physicochemical properties.


Subject(s)
Gold , Oligonucleotides , Oligonucleotide Array Sequence Analysis , Gold/chemistry , DNA , Tin Compounds/chemistry , Oxidation-Reduction
3.
Anal Chem ; 95(41): 15384-15393, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37801728

ABSTRACT

Glass is by far the most common substrate for biomolecular arrays, including high-throughput sequencing flow cells and microarrays. The native glass hydroxyl surface is modified by using silane chemistry to provide appropriate functional groups and reactivities for either in situ synthesis or surface immobilization of biologically or chemically synthesized biomolecules. These arrays, typically of oligonucleotides or peptides, are then subjected to long incubation times in warm aqueous buffers prior to fluorescence readout. Under these conditions, the siloxy bonds to the glass are susceptible to hydrolysis, resulting in significant loss of biomolecules and concomitant loss of signal from the assay. Here, we demonstrate that functionalization of glass surfaces with dipodal silanes results in greatly improved stability compared to equivalent functionalization with standard monopodal silanes. Using photolithographic in situ synthesis of DNA, we show that dipodal silanes are compatible with phosphoramidite chemistry and that hybridization performed on the resulting arrays provides greatly improved signal and signal-to-noise ratios compared with surfaces functionalized with monopodal silanes.


Subject(s)
High-Throughput Screening Assays , Silanes , Oligonucleotide Array Sequence Analysis/methods , Silanes/chemistry , Nucleic Acid Hybridization/methods , DNA/chemistry , Glass/chemistry , Surface Properties
4.
Curr Protoc ; 3(2): e667, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36794904

ABSTRACT

Oligonucleotide microarrays are used to investigate the interactome of nucleic acids. DNA microarrays are commercially available, whereas equivalent RNA microarrays are not. This protocol describes a method to convert DNA microarrays of any density and complexity into RNA microarrays using only readily available materials and reagents. This simple conversion protocol will facilitate the accessibility of RNA microarrays to a wide range of researchers. In addition to general considerations for the design of a template DNA microarray, this procedure describes the experimental steps of hybridization of an RNA primer to the immobilized DNA, followed by its covalent attachment via psoralen-mediated photocrosslinking. The subsequent enzymatic processing steps comprise the extension of the primer with T7 RNA polymerase to generate complementary RNA, and finally the removal of the DNA template with TURBO DNase. Beyond the conversion process, we also describe approaches to detect the RNA product either by internal labeling with fluorescently labeled NTPs or via hybridization to the product strand, a step that can then be complemented by an RNase H assay to confirm the nature of the product. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Conversion of a DNA microarray to an RNA microarray Alternate Protocol: Detection of RNA via incorporation of Cy3-UTP Support Protocol 1: Detection of RNA via hybridization Support Protocol 2: RNase H assay.


Subject(s)
Nucleic Acids , RNA , RNA/genetics , Oligonucleotide Array Sequence Analysis/methods , Nucleic Acid Hybridization , Ribonuclease H
5.
Nat Commun ; 13(1): 3772, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773271

ABSTRACT

RNA catalytic and binding interactions with proteins and small molecules are fundamental elements of cellular life processes as well as the basis for RNA therapeutics and molecular engineering. In the absence of quantitative predictive capacity for such bioaffinity interactions, high throughput experimental approaches are needed to sufficiently sample RNA sequence space. Here we report on a simple and highly accessible approach to convert commercially available customized DNA microarrays of any complexity and density to RNA microarrays via a T7 RNA polymerase-mediated extension of photocrosslinked methyl RNA primers and subsequent degradation of the DNA templates.


Subject(s)
DNA-Directed RNA Polymerases , RNA , Base Sequence , DNA Replication , DNA-Directed RNA Polymerases/metabolism , Oligonucleotide Array Sequence Analysis , RNA/chemistry , RNA/genetics
6.
RSC Adv ; 12(9): 5629-5637, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35425544

ABSTRACT

Fluorescein is commonly used to label macromolecules, particularly proteins and nucleic acids, but its fluorescence is known to be strongly dependent on its direct chemical environment. In the case of fluorescein-labeled nucleic acids, nucleobase-specific quenching originating in photoinduced charge transfer interactions results in sequence-dependent chemical environments. The resulting sequence specificity of fluorescent intensities can be used as a proximity detection tool, but can also lead to biases when the abundance of labeled nucleic acids is quantified by fluorescence intensity. Here we comprehensively survey how DNA sequences affect fluorescence intensity by preparing permutational libraries containing all possible 5mer contexts of both single-stranded and double-stranded DNA 3' or 5' end labeled with fluorescein (6-carboxyfluorescein, FAM). We observe the expected large quenching of fluorescence with guanine proximity but also find more complex fluorescence intensity changes depending on sequence contexts involving proximity to all four nucleobases. A terminal T (T > A ≈ C ≫ G) in both 3' and 5' labeled single strands results in the strongest fluorescence signal and it changes to a terminal C (C ≫ T > A ≫ G) in double-stranded DNA. Therefore, in dsDNA, the terminal G·C base pair largely controls the intensity of fluorescence emission depending on which of these two nucleotides the dye is attached to. Our data confirms the importance of guanine in fluorescence quenching while pointing towards an additional mechanism beyond the redox potential of DNA bases in modulating fluorescein intensity in both single and double stranded DNA. This study should help in designing better nucleic acid probes that can take sequence-dependent quenching effects into account.

7.
Nutrients ; 14(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35276952

ABSTRACT

We investigated whether the long-term intake of a typical sugar-sweetened soft drink (sugar-sweetened beverage, SSB) alters markers for taste function when combined with a standard diet (chow) or a model chow mimicking a Western diet (WD). Adult male CD1 mice had ad libitum access to tap water or SSB in combination with either the chow or the WD for 24 weeks. Energy intake from fluid and food was monitored three times a week. Cardiometabolic markers (body weight and composition, waist circumference, glucose and lipid profile, and blood pressure) were analyzed at the end of the intervention, as was the number and size of the fungiform papillae as well as mRNA levels of genes associated with the different cell types of taste buds and taste receptors in the circumvallate papillae using a cDNA microarray and qPCR. Although the overall energy intake was higher in the WD groups, there was no difference in body weight or other cardiometabolic markers between the SSB and water groups. The chemosensory surface from the fungiform papillae was reduced by 36 ± 19% (p < 0.05) in the WD group after SSB compared to water intake. In conclusion, the consumption of the SSB reduced the chemosensory surface of the fungiform papillae of CD1 mice when applied in combination with a WD independent of body weight. The data suggest synergistic effects of a high sugar-high fat diet on taste dysfunction, which could further influence food intake and promote a vicious cycle of overeating and taste dysfunction.


Subject(s)
Diet, Western , Sugar-Sweetened Beverages , Animals , Body Weight , Diet, Western/adverse effects , Male , Mice , Sugars , Taste
8.
Nucleic Acids Res ; 49(12): 6687-6701, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34157124

ABSTRACT

Nucleic acid microarrays are the only tools that can supply very large oligonucleotide libraries, cornerstones of the nascent fields of de novo gene assembly and DNA data storage. Although the chemical synthesis of oligonucleotides is highly developed and robust, it is not error free, requiring the design of methods that can correct or compensate for errors, or select for high-fidelity oligomers. However, outside the realm of array manufacturers, little is known about the sources of errors and their extent. In this study, we look at the error rate of DNA libraries synthesized by photolithography and dissect the proportion of deletion, insertion and substitution errors. We find that the deletion rate is governed by the photolysis yield. We identify the most important substitution error and correlate it to phosphoramidite coupling. Besides synthetic failures originating from the coupling cycle, we uncover the role of imperfections and limitations related to optics, highlight the importance of absorbing UV light to avoid internal reflections and chart the dependence of error rate on both position on the array and position within individual oligonucleotides. Being able to precisely quantify all types of errors will allow for optimal choice of fabrication parameters and array design.


Subject(s)
Gene Library , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Light , Nucleotides/analysis , Oligonucleotide Array Sequence Analysis , Photochemical Processes
9.
ACS Synth Biol ; 10(7): 1750-1760, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34156829

ABSTRACT

The untemplated activity of terminal deoxynucleotidyl transferase (TdT) represents its most appealing feature. Its use is well established in applications aiming for extension of a DNA initiator strand, but a more recent focus points to its potential in enzymatic de novo synthesis of DNA. Whereas its low substrate specificity for nucleoside triphosphates has been studied extensively, here we interrogate how the activity of TdT is modulated by the nature of the initiating strands, in particular their length, chemistry, and nucleotide composition. Investigation of full permutational libraries of mono- to pentamers of d-DNA, l-DNA, and 2'O-methyl-RNA of differing directionality immobilized to glass surfaces, and generated via photolithographic in situ synthesis, shows that the efficiency of extension strongly depends on the nucleobase sequence. We also show TdT being catalytically active on a non-nucleosidic substrate, hexaethylene glycol. These results offer new perspectives on constraints and strategies for de novo synthesis of DNA using TdT regarding the requirements for initiation of enzymatic generation of DNA.


Subject(s)
DNA Nucleotidylexotransferase/metabolism , DNA Replication , Catalysis , DNA-Directed DNA Polymerase/metabolism , Nucleotides/chemistry , Stereoisomerism , Substrate Specificity
10.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070942

ABSTRACT

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Subject(s)
Arginine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/drug effects , Protons , Serotonin/biosynthesis , Cell Line, Tumor , Fenclonine/pharmacology , Gene Expression , Granisetron/pharmacology , Humans , Hydrogen-Ion Concentration , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Protease Inhibitors/pharmacology , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Antagonists/pharmacology , Stomach/cytology , Stomach/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/antagonists & inhibitors , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
11.
J Agric Food Chem ; 69(45): 13339-13349, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-33461297

ABSTRACT

Recent data have shown anti-inflammatory effects for trans-resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA. A mean 19 ± 6% reduction of the RSV-induced bitter taste intensity was achieved by co-administration of 50 ppm of the bitter-masking, TAS2R43 antagonist homoeriodictyol (HED). Mechanistic experiments in a stably CRISPR-Cas9-edited TAS2R43ko gastric cell model revealed involvement of TAS2R43 in the HED-evoked effect on RSV-induced proton secretion, whereas the cellular response to RSV did not depend upon TAS2R43. Next, the IL-6 modulatory effect of 100 µM RSV was studied in LPS-treated immune-competent HGF-1 cells. After 6 h of treatment, RSV reduced the LPS-induced IL-6 gene expression and protein release by -46.2 ± 12.7 and -73.9 ± 2.99%, respectively. This RSV-evoked effect was abolished by co-administration of HED. Because real-time quantitative polymerase chain reaction analyses revealed a regulation of TAS2R50 in RSV with or without HED-treated HGF-1 cells, an siRNA knockdown approach of TAS2R50 was applied to verify TAS2R50 involvement in the RSV-induced reduction of the LPS-evoked IL-6 release in HGT-1 cells.


Subject(s)
Interleukin-6 , Receptors, G-Protein-Coupled/physiology , Resveratrol , Taste , Anti-Inflammatory Agents , Fibroblasts , Humans , Interleukin-6/genetics , Resveratrol/pharmacology
12.
Nat Commun ; 11(1): 5345, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093494

ABSTRACT

Due to its longevity and enormous information density, DNA is an attractive medium for archival storage. The current hamstring of DNA data storage systems-both in cost and speed-is synthesis. The key idea for breaking this bottleneck pursued in this work is to move beyond the low-error and expensive synthesis employed almost exclusively in today's systems, towards cheaper, potentially faster, but high-error synthesis technologies. Here, we demonstrate a DNA storage system that relies on massively parallel light-directed synthesis, which is considerably cheaper than conventional solid-phase synthesis. However, this technology has a high sequence error rate when optimized for speed. We demonstrate that even in this high-error regime, reliable storage of information is possible, by developing a pipeline of algorithms for encoding and reconstruction of the information. In our experiments, we store a file containing sheet music of Mozart, and show perfect data recovery from low synthesis fidelity DNA.


Subject(s)
Chemistry Techniques, Synthetic/methods , DNA/chemical synthesis , Information Storage and Retrieval/methods , Algorithms , Base Sequence , DNA/chemistry , DNA/genetics , Gene Library , Light , Monte Carlo Method , Oligonucleotide Array Sequence Analysis/methods , Photochemical Processes , Sequence Analysis, DNA
13.
Chemistry ; 26(63): 14310-14314, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-32515523

ABSTRACT

Photolithographic in situ synthesis of nucleic acids enables extremely high oligonucleotide sequence density as well as complex surface patterning and combined spatial and molecular information encoding. No longer limited to DNA synthesis, the technique allows for total control of both chemical and Cartesian space organization on surfaces, suggesting that hybridization patterns can be used to encode, display or encrypt informative signals on multiple chemically orthogonal levels. Nevertheless, cross-hybridization reduces the available sequence space and limits information density. Here we introduce an additional, fully independent information channel in surface patterning with in situ l-DNA synthesis. The bioorthogonality of mirror-image DNA duplex formation prevents both cross-hybridization on chimeric l-/d-DNA microarrays and also results in enzymatic orthogonality, such as nuclease-proof DNA-based signatures on the surface. We show how chimeric l-/d-DNA hybridization can be used to create informative surface patterns including QR codes, highly counterfeiting resistant authenticity watermarks, and concealed messages within high-density d-DNA microarrays.


Subject(s)
DNA , Surface Properties , DNA/chemistry , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Oligonucleotides/chemistry
14.
J Agric Food Chem ; 68(11): 3434-3444, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-31891507

ABSTRACT

This study aimed at identifying whether the bitter-tasting amino acids l-arginine (l-ARG) and l-isoleucine (l-ILE) differentially regulate mechanisms of gastric acid secretion in human parietal cells (HGT-1 cells) via activation of bitter taste sensing receptors (T2Rs). In a first set of experiments, involvement of T2Rs in l-ARG and l-ILE-modulated proton secretion was demonstrated by co-treatment of HGT-1 cells with T2R antagonists. Subsequent whole genome screenings by means of cDNA arrays revealed T2R1 as a prominent target for both amino acids. Next, the functional role of T2R1 was verified by means of a T2R1 CRISPR-Cas9 knock-out approach. Here, the effect of l-ARG on proton secretion decreased by 65.7 ± 21.9% and the effect of l-ILE increased by 93.2 ± 24.1% in HGT-1 T2R1 ko versus HGT-1 wt cells (p < 0.05). Overall, our results indicate differential effects of l-ARG and l-ILE on proton secretion in HGT-1 cells and our molecular docking studies predict distinct binding for these amino acids in the binding site of T2R1. Further studies will elucidate whether the mechanism of differential effects involves structure-specific ligand-biased signaling of T2R1 or additional cellular targets.


Subject(s)
Isoleucine , Taste , Amino Acids , Arginine , Humans , Molecular Docking Simulation , Protons , Receptors, G-Protein-Coupled/genetics
15.
Sci Rep ; 9(1): 17822, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780717

ABSTRACT

Uracil-DNA glycosylase (UDG) is a critical DNA repair enzyme that is well conserved and ubiquitous in nearly all life forms. UDG protects genomic information integrity by catalyzing the excision from DNA of uracil nucleobases resulting from misincorporation or spontaneous cytosine deamination. UDG-mediated strand cleavage is also an important tool in molecular biotechnology, allowing for controlled and location-specific cleavage of single- and double DNA chemically or enzymatically synthesized with single or multiple incorporations of deoxyuridine. Although the cleavage mechanism is well-understood, detailed knowledge of efficiency and sequence specificity, in both single and double-stranded DNA contexts, has so far remained incomplete. Here we use an experimental approach based on the large-scale photolithographic synthesis of uracil-containing DNA oligonucleotides to comprehensively probe the context-dependent uracil excision efficiency of UDG.


Subject(s)
DNA Cleavage , DNA, Single-Stranded/chemistry , Uracil-DNA Glycosidase/chemistry , Amino Acid Sequence , Base Sequence , DNA Repair , Deamination , Humans , Kinetics , Oligonucleotide Array Sequence Analysis , Oligonucleotides/metabolism , Substrate Specificity , Uracil/chemistry
16.
Molecules ; 24(22)2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31739445

ABSTRACT

The Western diet is characterized by a high consumption of heat-treated fats and oils. During deep-frying processes, vegetable oils are subjected to high temperatures which result in the formation of lipid peroxidation products. Dietary intake of oxidized vegetable oils has been associated with various biological effects, whereas knowledge about the effects of structurally-characterized lipid peroxidation products and their possible absorption into the body is scarce. This study investigates the impact of linoleic acid, one of the most abundant polyunsaturated fatty acids in vegetable oils, and its primary and secondary peroxidation products, 13-HpODE and hexanal, on genomic and metabolomic pathways in human gastric cells (HGT-1) in culture. The genomic and metabolomic approach was preceded by an up-to-six-hour exposure study applying 100 µM of each test compound to the apical compartment in order to quantitate the compounds' recovery at the basolateral side. Exposure of HGT-1 cells to either 100 µM linoleic acid or 100 µM 13-HpODE resulted in the formation of approximately 1 µM of the corresponding hydroxy fatty acid, 13-HODE, in the basolateral compartment, whereas a mean concentration of 0.20 ± 0.13 µM hexanal was quantitated after an equivalent application of 100 µM hexanal. An integrated genomic and metabolomic pathway analysis revealed an impact of the linoleic acid peroxidation products, 13-HpODE and hexanal, primarily on pathways related to amino acid biosynthesis (p < 0.05), indicating that peroxidation of linoleic acid plays an important role in the regulation of intracellular amino acid biosynthesis.


Subject(s)
Amino Acids/metabolism , Genomics/methods , Linoleic Acid/metabolism , Metabolomics/methods , Hexanes/metabolism , Humans , Lipid Peroxidation , Oxidation-Reduction
17.
Biochemistry ; 58(44): 4389-4397, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31631649

ABSTRACT

Ribonuclease HII (RNase HII) is an essential endoribonuclease that binds to double-stranded DNA with RNA nucleotide incorporations and cleaves 5' of the ribonucleotide at RNA-DNA junctions. Thought to be present in all domains of life, RNase HII protects genomic integrity by initiating excision repair pathways that protect the encoded information from rapid degradation. There is sparse evidence that the enzyme cleaves some substrates better than others, but a large-scale study is missing. Such large-scale studies can be carried out on microarrays, and we employ chemical photolithography to synthesize very large combinatorial libraries of fluorescently labeled DNA/RNA chimeric sequences that self-anneal to form hairpin structures that are substrates for Escherichia coli RNase HII. The relative activity is determined by the loss of fluorescence upon cleavage. Each substrate includes a double-stranded 5 bp variable region with one to five consecutive ribonucleotide substitutions. We also examined the effect of all possible single and double mismatches, for a total of >9500 unique structures. Differences in cleavage efficiency indicate some level of substrate preference, and we identified the 5'-dC/rC-rA-dX-3' motif in well-cleaved substrates. The results significantly extend known patterns of RNase HII sequence specificity and serve as a template using large-scale photolithographic synthesis to comprehensively map landscapes of substrate specificity of nucleic acid-processing enzymes.


Subject(s)
DNA/chemistry , RNA/chemistry , Ribonuclease H/chemistry , DNA/chemical synthesis , DNA/genetics , Escherichia coli/enzymology , Gene Library , Hydrolysis , Inverted Repeat Sequences , Microarray Analysis , RNA/chemical synthesis , RNA/genetics , Substrate Specificity
18.
J Agric Food Chem ; 67(42): 11638-11649, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31532204

ABSTRACT

Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 µM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 µM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.


Subject(s)
Acrolein/analogs & derivatives , Cinnamates/pharmacology , Cinnamomum zeylanicum/chemistry , Fatty Acids/metabolism , Plant Extracts/pharmacology , Propanols/pharmacology , Acrolein/chemistry , Acrolein/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Cell Differentiation , Cinnamates/chemistry , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Plant Extracts/chemistry , Propanols/chemistry
19.
J Vis Exp ; (150)2019 08 12.
Article in English | MEDLINE | ID: mdl-31449249

ABSTRACT

Photolithography is a powerful technique for the synthesis of DNA oligonucleotides on glass slides, as it combines the efficiency of phosphoramidite coupling reactions with the precision and density of UV light reflected from micrometer-sized mirrors. Photolithography yields microarrays that can accommodate from hundreds of thousands up to several million different DNA sequences, 100-nt or longer, in only a few hours. With this very large sequence space, microarrays are ideal platforms for exploring the mechanisms of nucleic acid·ligand interactions, which are particularly relevant in the case of RNA. We recently reported on the preparation of a new set of RNA phosphoramidites compatible with in situ photolithography and which were subsequently used to grow RNA oligonucleotides, homopolymers as well as mixed-base sequences. Here, we illustrate in detail the process of RNA microarray fabrication, from the experimental design, to instrumental setup, array synthesis, deprotection and final hybridization assay using a template 25mer sequence containing all four bases as an example. In parallel, we go beyond hybridization-based experiments and exploit microarray photolithography as an inexpensive gateway to complex nucleic acid libraries. To do so, high-density DNA microarrays are fabricated on a base-sensitive monomer that allows the DNA to be conveniently cleaved and retrieved after synthesis and deprotection. The fabrication protocol is optimized so as to limit the number of synthetic errors and to that effect, a layer of ß-carotene solution is introduced to absorb UV photons that may otherwise reflect back onto the synthesis substrates. We describe in a step-by-step manner the complete process of library preparation, from design to cleavage and quantification.


Subject(s)
DNA/genetics , Nucleic Acid Hybridization/genetics , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , RNA/genetics , Gene Library , Humans , Nucleic Acids/genetics , Oligonucleotides/genetics
20.
Nat Commun ; 10(1): 3805, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444344

ABSTRACT

The versatile and tunable self-assembly properties of nucleic acids and engineered nucleic acid constructs make them invaluable in constructing microscale and nanoscale devices, structures and circuits. Increasing the complexity, functionality and ease of assembly of such constructs, as well as interfacing them to the macroscopic world requires a multifaceted and programmable fabrication approach that combines efficient and spatially resolved nucleic acid synthesis with multiple post-synthetic chemical and enzymatic modifications. Here we demonstrate a multi-level photolithographic patterning approach that starts with large-scale in situ surface synthesis of natural, modified or chimeric nucleic acid molecular structures and is followed by chemical and enzymatic nucleic acid modifications and processing. The resulting high-complexity, micrometer-resolution nucleic acid surface patterns include linear and branched structures, multi-color fluorophore labeling and programmable targeted oligonucleotide immobilization and cleavage.


Subject(s)
Biosensing Techniques/instrumentation , Microtechnology/methods , Nucleic Acids/chemistry , Cross-Linking Reagents/chemistry , Fluorescence , Light , Nucleic Acid Conformation/radiation effects , Nucleic Acids/radiation effects , Oligonucleotides/chemistry , Oligonucleotides/radiation effects , Photochemical Processes/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...