Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 58(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36363557

ABSTRACT

BACKGROUND: Exosomes are ubiquitous extracellular nanovesicles secreted from almost all living cells that are thought to be involved in several important cellular processes, including cell-cell communication and signaling. Exosomes serve as a liquid biopsy tool for clinical and translational research. Although many techniques have been used to isolate exosomes, including ultracentrigation, size-exclusion chromatography, and immunocapturing-based techniques, these techniques are not convenient, they require expensive instrumentation, and they are unhandy for clinical samples. Precipitation techniques from available commercial kits that contain polyethelene glycol (PEG) are now widely used, but these kits are expensive, especially if a large number of biological samples are to be processed. OBJECTIVE: the purpose of this study is to compare and optimize the efficacy of different concentrations of PEG with two commercial kits ExoQuick (SBI) and Total Exosome Isolation (TEI) from Invitrogen in human plasma. METHODS AND MATERIALS: we determined exosome quantity, size distribution, marker expression, and downstream application. RESULTS: among the precipitation methods, we found the size of particles and concentrations with 10-20% PEG are similar to ExoQuick and better than TEI. Interestingly, we detected cfDNA with ExoQuick and 10-20% PEG but not TEI and 5% PEG. Moreover, 10% PEG detection of miR-122 and miR-16 expression was superior to ExoQuick and TEI. Furthermore, in proteomics results it also found the identified proteins better than commercial kits but there was a high level of contamination of other proteins in serum. CONCLUSIONS: together, these findings show that an optimal concentration of 10% PEG serves as a guide for use with clinical samples in exosome isolation for downstream applications.


Subject(s)
Exosomes , MicroRNAs , Humans , Exosomes/chemistry , Exosomes/genetics , Exosomes/metabolism , MicroRNAs/analysis , Proteomics , Biomarkers/analysis , Glycols/analysis , Glycols/metabolism
2.
AAPS PharmSciTech ; 21(4): 134, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32415347

ABSTRACT

This work described the development of a cationic polylactic acid (PLA)-based nanoparticles (NPs) as an antigen delivery system using dimethyldioctadecylammonium bromide (DDA) to facilitate the engulfment of BSA-FITC by porcine alveolar macrophages (3D4/2 cells) and heat-labile enterotoxin subunit B (LTB) to enhance the transport of BSA-FITC across M cells. The experimental design methodology was employed to study the influence of PLA, polyvinyl alcohol (PVA), DDA, and LTB on the physical properties of the PLA-based NPs. The size of selected cationic PLA NPs comprising 5% PLA, 5% PVA, and 0.6% DDA with or without LTB absorption was range from 367 to 390 nm with a polydispersity index of 0.26, a zeta potential of + 26.00 to + 30.55 mV, and entrapment efficiency of 41.43%. Electron micrographs revealed NPs with spherical shape. The release kinetic of BSA from the NPs followed the Korsmeyer-Peppas kinetics. The cationic PLA NPs with LTB surface absorption showed 3-fold increase in BSA-FITC transported across M cells compared with the NPs without LTB absorption. The uptake studies demonstrated 2-fold increase in BSA-FITC intensity in 3D4/2 cells with cationic NPs as compared with anionic NPs. Overall, the results suggested that LTB decreased the retention time of BSA-FITC loaded in the cationic PLA NPs within the M cells, thus promoting the transport of BSA-FITC across the M cells, and cationic NPs composed of DDA help facilitate the uptake of BSA-FITC in the 3D4/2 cells. Further studies in pigs with respiratory antigens will provide information on the efficacy of cationic PLA NPs as a nasal antigen carrier system.


Subject(s)
Fluorescein-5-isothiocyanate/analogs & derivatives , Macrophages, Alveolar/metabolism , Nanoparticles/metabolism , Polyesters/metabolism , Serum Albumin, Bovine/metabolism , Animals , Cations , Cell Line , Coculture Techniques , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/chemistry , Fluorescein-5-isothiocyanate/metabolism , Macrophages, Alveolar/drug effects , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Particle Size , Polyesters/administration & dosage , Polyesters/chemistry , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Swine
3.
Toxicon ; 146: 31-41, 2018 May.
Article in English | MEDLINE | ID: mdl-29567103

ABSTRACT

Snake venom metalloproteinases (SVMPs) are the key enzymes in Russell's viper (RV) venom which target all important components of haemostasis, such as clotting factors, platelets, endothelial cells and basement membrane. The structural diversity of SVMPs contributes to the broad spectrum of biological activities. The aim of the study was to investigate the SVMP transcript profile to gain better insights into the characteristic clinical manifestations of the Myanmar Russell's viper (MRV) bites that distinguish it from the RVs of other habitats. Next generation sequencing (RNA-Seq) of mRNA from MRV venom glands (2 males and 1 female) was performed on an Illumina HiSeq2000 platform and then de novo assembled using Trinity software. A total of 59 SVMP contigs were annotated through a Blastn search against the serpent nucleotide database from NCBI. Among them, disintegrins were the most abundant transcripts (75%) followed by the P-III class SVMPs (25%). The P-II SVMPs were scarce (0.002%), while no P-I SVMPs were detectable in the transcriptome. For detailed structural analysis, contigs were conceptually translated and compared with amino acid sequences from other RVs and other vipers using Clustal Omega. The RTS-disintegrin (jerdostatin homolog) was the most abundant among transcripts corresponding to 5 disintegrin isoforms. From 10 isoforms of SVMPs, RVV-X, and Vipera lebetina apoptosis-inducing protease (VLAIP) homolog, hereby termed Daboia siamensis AIP (DSAIP), were found to be highly expressed. Venom protein analysis using SDS-PAGE followed by mass spectrometry revealed that the disintegrin was scarce, while the latter two SVMPs were abundant. These two proteins can contribute to severe clinical manifestations caused by MRV envenomation.


Subject(s)
Daboia , Metalloproteases/chemistry , Viper Venoms/enzymology , Amino Acid Sequence , Animals , Disintegrins , Female , High-Throughput Nucleotide Sequencing , Male , Myanmar , Protein Isoforms , RNA, Messenger , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...