Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172095, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575011

ABSTRACT

This comprehensive investigation highlighted the complex adsorption behaviors of antibiotics onto granular activated carbon (GAC), the effectiveness of this adsorption in reducing bacterial toxicity, and the reduction of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in hospital wastewater (HWW) effluents. Six GACs were characterized for their physicochemical properties, and their ability to adsorb six antibiotics in the background matrix of actual HWW was evaluated. Coconut shell-derived GAC (Co-U), which had the highest hydrophobicity and lowest content of oxygen-containing acidic functional groups, demonstrated the highest adsorption capacities for the tested antibiotics. Bacterial toxicity tests revealed that GACs could eliminate the bacterial toxicity from antibiotic intermediates present in chlorinated HWW. By contrast, the bacterial toxicity could not be removed by GACs in non-chlorinated HWW due to the greater presence of intermediate components identified by LC-MS/MS. The intraparticle diffusion coefficient of antibiotics adsorbed onto Co-U could be calculated by adsorption kinetics derived from the linear driving force model and the homogenous intraparticle diffusion model associated with the linear adsorption isotherms (0-150 µg/L). Meropenem and sulfamethoxazole exhibited the highest adsorption capacities in a single-solute solution compared to penicillin G, ampicillin, cetazidime, and ciprofloxacin. However, the greater adsorption capacities of meropenem and sulfamethoxazole disappeared in mixed-solute solutions, indicating the lowest adsorption competition. GAC can eliminate most ARGs while also promoting the growth of some ARB. Chlorination (free chlorine residues at 0.5 mg Cl2/L) did not significantly affect the overall composition of ARGs and ARB in HWW. However, the accumulation of ARGs and ARB on GAC in fixed bed columns was lower in chlorinated HWW than in non-chlorinated HWW due to an increase in the adsorption of intermediates.


Subject(s)
Anti-Bacterial Agents , Charcoal , Halogenation , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Charcoal/chemistry , Wastewater/chemistry , Waste Disposal, Fluid/methods , Adsorption , Drug Resistance, Microbial/genetics , Hospitals , Bacteria/drug effects , Drug Resistance, Bacterial/genetics
2.
Environ Res ; 196: 110335, 2021 05.
Article in English | MEDLINE | ID: mdl-33075356

ABSTRACT

In this study, we investigated the synergetic effects of coexisting electrolytes and dissolved organic matter (DOM) on Carbamazepine (CBZ) and Ciprofloxacin (CIP) adsorption on the 1D flexible structure of MIL-53(Al) and 3D rigid structure of UiO-66(Zr). The effects of electrolytes on the adsorption of CBZ and CIP on 1D flexible framework of MIL-53(Al) were more significant than those observed from the 3D framework of UiO-66(Zr). The presence of sulfate, nitrate, and phosphate anions indicates high potential to promote the adsorption of CBZ and CIP onto MIL-53(Al) and UiO-66(Zr) because of the decrease of solubility and strengthening of electrostatic interactions by substitution of oxo-anions at the metal complex node via covalent bonding. The lower hydration energy of the potassium ion enhanced CBZ adsorption on MIL-53(Al), while the higher hydration energy of calcium and magnesium ions reduced the adsorption capacity of CBZ and CIP on MIL-53(Al) and UiO-66(Zr). CBZ interacted with fractionated humic acid better than CIP. High-density carboxylic and aromatic functional groups on humic acid ensured that only humic acid larger than 1KDa was adsorbed by MIL-53(Al). Tryptophan-like and humic acid-like DOM were both detected in real hospital effluent, and their effects on CIP and CBZ adsorption onto MIL-53(Al) were investigated. The presence of tryptophan did not affect CBZ adsorption on MIL-53(Al) (except when coexisting with calcium ions). Conversely, tryptophan interfered with CIP adsorption. The presence of humic acid lower than 1KDa promoted the adsorption of CBZ and CIP by increasing the breathing effect of MIL-53(Al)'s 1D flexible framework. The presence of humic acid with molecular size greater than 1KDa enhanced both CBZ and CIP adsorption via a multilayer adsorption mechanism.


Subject(s)
Metal-Organic Frameworks , Pharmaceutical Preparations , Phthalic Acids , Adsorption
3.
Sci Total Environ ; 720: 137449, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32135284

ABSTRACT

The synergetic effects of benzene-1,4-dicarboxylic acid (BDC) linker structure and the metal cluster of MOFs on adsorption mechanisms of carbamazepine, ciprofloxacin and mefenamic acid were investigated in single and mixed solutions. A 1D flexible framework MIL-53(Al), 3D rigid framework UiO-66(Zr) and 3D flexible framework MIL-88B(Fe) were applied as adsorbents. The breathing effect of MIL-53(Al) caused by its flexible structure can enhance intraparticle diffusion for all pharmaceuticals and perform a critical role in excellent adsorption performances. The 3D rigid BDC structure of UiO-66(Zr) caused a steric effect that reflected low or negligible adsorption. Unless concerning accessibility through the internal structure of the MOFs, the binding strengths calculated by the DFT study were in the following order: MIL-88B(Fe) > MIL-53(Al) > UiO-66(Zr). The Fe cluster in MIL-88B(Fe) seems to have the highest affinity for the carboxylic group of pharmaceuticals compared with Al and Zr; however, the lower porosity of MIL-88B(Fe) might limit the adsorption capacity. Moreover, in mixed solutions, the higher acidity of mefenamic acid can enhance competitive performance in interactions with the metal cation cluster of each MOF. Together with the breathing effect, H-bonding and π-π interaction were shown to be the alternative interactions of synergetic adsorption mechanisms.


Subject(s)
Dicarboxylic Acids/chemistry , Adsorption , Benzene , Carbamazepine , Metal-Organic Frameworks
SELECTION OF CITATIONS
SEARCH DETAIL
...