Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurosci ; 17(9): 3136-47, 1997 May 01.
Article in English | MEDLINE | ID: mdl-9096148

ABSTRACT

Maturation of electrical excitability during early postnatal development is critical to formation of functional neural circuitry in the mammalian neocortex. Little is known, however, about the changes in gene expression underlying the development of firing properties that characterize different classes of cortical neurons. Here we describe the development of cortical neurons with two distinct firing phenotypes, regular-spiking (RS) and fast-spiking (FS), that appear to emerge from a population of immature multiple-spiking (IMS) neurons during the first two postnatal weeks, both in vivo (within layer IV) and in vitro. We report the expression of a slowly inactivating, 4-AP-sensitive potassium current (K4-AP) at significantly higher density in FS compared with RS neurons. The same current is expressed at intermediate levels in IMS neurons. The kinetic, voltage-dependent, and pharmacological properties of the K4-AP current are similar to those observed by heterologous expression of Kv3.1 potassium channel mRNA. Single-cell RT-PCR analysis demonstrates that PCR products representing Kv3.1 transcripts are amplified more frequently from FS than RS neurons, with an intermediate frequency of Kv3.1 detection in neurons with immature firing properties. Taken together, these data suggest that the Kv3.1 gene encodes the K4-AP current and that expression of this gene is regulated in a cell-specific manner during development. Analysis of the effects of 4-AP on firing properties suggests that the K4-AP current is important for rapid action potential repolarization, fast after-hyperpolarization, brief refractory period, and high firing frequency characteristic of FS GABAergic interneurons.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/growth & development , Phenotype , Potassium Channels/physiology , Animals , Cerebral Cortex/physiology , Mice , Mice, Inbred ICR
SELECTION OF CITATIONS
SEARCH DETAIL
...