Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 25(10): 3844-3853, 2021 10.
Article in English | MEDLINE | ID: mdl-33848253

ABSTRACT

Manual scoring of sleep stages from polysomnography (PSG) records is essential to understand the sleep quality and architecture. Since the PSG requires specialized personnel, a lab environment, and uncomfortable sensors, non-contact sleep staging methods based on machine learning techniques have been investigated over the past years. In this study, we propose an attention-based bidirectional long short-term memory (Attention Bi-LSTM) model for automatic sleep stage scoring using an impulse-radio ultra-wideband (IR-UWB) radar which can remotely detect vital signs. Sixty-five young (30.0 ± 8.6 yrs.) and healthy volunteers underwent nocturnal PSG and IR-UWB radar measurement simultaneously; From 51 recordings, 26 were used for training, 8 for validation, and 17 for testing. Sixteen features including movement-, respiration-, and heart rate variability-related indices were extracted from the raw IR-UWB signals in each 30-s epoch. Sleep stage classification performances of Attention Bi-LSTM model with optimized hyperparameters were evaluated and compared with those of conventional LSTM networks for same test dataset. In the results, we achieved an accuracy of 82.6 ± 6.7% and a Cohen's kappa coefficient of 0.73 ± 0.11 in the classification of wake stage, REM sleep, light (N1+N2) sleep, and deep (N3) sleep which is significantly higher than the conventional LSTM networks (p < 0.01). Moreover, the classification performances were higher than those reported in comparative studies, demonstrating the effectiveness of the attention mechanism coupled with bi-LSTM networks for the sleep staging using cardiorespiratory signals.


Subject(s)
Radar , Sleep Stages , Humans , Machine Learning , Polysomnography , Sleep
2.
Sensors (Basel) ; 21(1)2020 Dec 25.
Article in English | MEDLINE | ID: mdl-33375722

ABSTRACT

Continuous blood pressure (BP) monitoring is important for patients with hypertension. However, BP measurement with a cuff may be cumbersome for the patient. To overcome this limitation, various studies have suggested cuffless BP estimation models using deep learning algorithms. A generalized model should be considered to decrease the training time, and the model reproducibility should be taken into account in multi-day scenarios. In this study, a BP estimation model with a bidirectional long short-term memory network is proposed. The features are extracted from the electrocardiogram, photoplethysmogram, and ballistocardiogram. The leave-one-subject-out (LOSO) method is incorporated to generalize the model and fine-tuning is applied. The model was evaluated using one-day and multi-day tests. The proposed model achieved a mean absolute error (MAE) of 2.56 and 2.05 mmHg for the systolic and diastolic BP (SBP and DBP), respectively, in the one-day test. Moreover, the results demonstrated that the LOSO method with fine-tuning was more compatible in the multi-day test. The MAE values of the model were 5.82 and 5.24 mmHg for the SBP and DBP, respectively.


Subject(s)
Memory, Short-Term , Photoplethysmography , Blood Pressure , Blood Pressure Determination , Humans , Pulse Wave Analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...