Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 24(17): 19195-202, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557199

ABSTRACT

A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated.

2.
Opt Lett ; 34(13): 2045-7, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19571994

ABSTRACT

A birefringence measurement system is introduced to get high phase resolution for detection of low contents of biochemicals. By using a fixed quarter-wave plate and a rotating polarizer, the phase difference between two orthogonal polarizations is transformed into phase delay of output sinusoidal signal. Analyzing the output phase, birefringence change could be detected with a phase noise of 0.14 degrees. As well as the birefringence measurement system, an optical evanescent waveguide sensor was developed. A rib-type silica waveguide overlaid with TiO2 film was fabricated, and a developed birefringence measurement technique was employed in evaluating a refractive index change on waveguide surface. For the fabricated waveguide with a 40-nm-thick TiO2 film, experiment results showed that the minimum detectable index change was 5.9x10(-7).


Subject(s)
Refractometry/instrumentation , Refractometry/methods , Rotation , Birefringence , Surface Properties , Titanium
3.
Opt Lett ; 34(7): 1048-50, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19340215

ABSTRACT

A refractometric sensor resorting to a vertically coupled polymeric microdisk resonator was demonstrated, estimating the refractive index (RI) of an analyte by monitoring the resonant wavelength shift in its transfer characteristics. The disk resonator was especially overlaid with a high RI TiO2 film, thereby reinforcing the interaction of the evanescent field of its guided mode with the analyte. The sensitivity of the sensor was theoretically and experimentally confirmed to be enhanced by adjusting the overlay thickness. The fabricated sensor provided the maximum sensitivity of approximately 294 nm/RIU (refractive index unit) with the 40-nm-thick overlay, which is equivalent to an improvement of 150% compared with the case without the overlay.

4.
Opt Express ; 17(4): 2638-45, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19219167

ABSTRACT

An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.


Subject(s)
Fiber Optic Technology/instrumentation , Optical Devices , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Microwaves , Radio Waves , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...