Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946232

ABSTRACT

Cable-stayed bridges are damaged by multiple factors such as natural disasters, weather, and vehicle load. In particular, if the stayed cable, which is an essential and weak component of the cable-stayed bridge, is damaged, it may adversely affect the adjacent cables and worsen the bridge structure condition. Therefore, we must accurately determine the condition of the cable with a technology-based evaluation strategy. In this paper, we propose a deep learning model that allows us to locate the damaged cable and estimate its cross-sectional area. To obtain the data required for the deep learning training, we use the tension data of the reduced area cable, which are simulated in the Practical Advanced Analysis Program (PAAP), a robust structural analysis program. We represent the sensor data of the damaged cable-stayed bridge as a graph composed of vertices and edges using tension and spatial information of the sensors. We apply the sensor geometry by mapping the tension data to the graph vertices and the connection relationship between sensors to the graph edges. We employ a Graph Neural Network (GNN) to use the graph representation of the sensor data directly. GNN, which has been actively studied recently, can treat graph-structured data with the most advanced performance. We train the GNN framework, the Message Passing Neural Network (MPNN), to perform two tasks to identify damaged cables and estimate the cable areas. We adopt a multi-task learning method for more efficient optimization. We show that the proposed technique achieves high performance with the cable-stayed bridge data generated from PAAP.

2.
IEEE Trans Vis Comput Graph ; 27(3): 2186-2201, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31514142

ABSTRACT

Urban traffic congestion has become an important issue not only affecting our daily lives, but also limiting economic development. The primary cause of urban traffic congestion is that the number of vehicles is higher than the permissible limit of the road. Previous studies have focused on dispersing traffic volume by detecting urban traffic congestion zones and predicting future trends. However, to solve the fundamental problem, it is necessary to discover the cause of traffic congestion. Nevertheless, it is difficult to find a research which presents an approach to identify the causes of traffic congestion. In this paper, we propose a technique to analyze the cause of traffic congestion based on the traffic flow theory. We extract vehicle flows from traffic data, such as GPS trajectory and Vehicle Detector data. We detect vehicle flow changes utilizing the entropy from the information theory. Then, we build cumulative vehicle count curves (N-curve) that can quantify the flow of the vehicles in the traffic congestion area. The N-curves are classified into four different traffic congestion patterns by a convolutional neural network. Analyzing the causes and influence of traffic congestion is difficult and requires considerable experience and knowledge. Therefore, we present a visual analytics system that can efficiently perform a series of processes to analyze the cause and influence of traffic congestion. Through case studies, we have evaluated that our system can classify the causes of traffic congestion and can be used efficiently in road planning.

SELECTION OF CITATIONS
SEARCH DETAIL
...