Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 293: 112836, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34052611

ABSTRACT

Desalination and wastewater treatment technologies require an effective solution for brine management to ensure environmental sustainability, which is closely linked with efficient process operations, reduction of chemical dosages, and valorization of brines. Within the scope of desalination brine reclamation, a circular system consisting of seawater reverse osmosis (SWRO), membrane distillation (MD), and forward osmosis (FO) three-process hybrid is investigated. The proposed design increases water recovery from SWRO brine (by MD) and dilutes concentrated brine to seawater level (by FO) for SWRO feed. It ultimately reduces SWRO process brine disposal and improves crystallization efficiency for a zero-liquid discharge application. The operating range of the hybrid system is indicated by a seawater volumetric concentration factor (VCF) ranging from 1.0 to 2.2, which covers practical and sustainable operation in full-scale applications. Within the proposed VCF range, different operating conditions of the MD and FO processes were evaluated in series with concentrated seawater as well as real SWRO brine from a full-scale desalination plant. Water quality and membrane surface were analyzed before and after experiments to assess the impact of the SWRO brine. Despite their low concentration (0.13 mg/L as phosphorous), antiscalants present in SWRO brine alleviated the flux decline in MD operations by 68.3% compared to operations using seawater concentrate, while no significant influence was observed on the FO process. A full spectrum of water quality analysis of real SWRO brine and Red Sea water is made available for future SWRO brine reclamation studies. The operating conditions and experimental results have shown the potential of the SWRO-MD-FO hybrid system for a circular brine reclamation.


Subject(s)
Distillation , Water Purification , Membranes, Artificial , Osmosis , Salts , Seawater
2.
Water Res ; 198: 117157, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33933919

ABSTRACT

Forward osmosis-membrane distillation (FO-MD) hybrids were recently found suitable for produced water treatment. Exclusion of synthetic chemical draw solutions, typically used for FO, can reduce FO-MD operational costs and ease its onsite application. This study experimentally validates a novel concept for the simultaneous treatment of different produced water streams available at the same industrial site using an FO-MD hybrid system. The water oil separator outlet (WO) stream was selected as FO draw solution and it generated average fluxes ranging between 8.30 LMH and 26.78 LMH with four different feed streams. FO fluxes were found to be governed by the complex composition of the feed streams. On the other hand, with WO stream as MD feed, an average flux of 14.41 LMH was achieved. Calcium ions were found as a main reason for MD flux decline in the form of CaSO4 scaling and stimulating the interaction between the membrane and humic acid molecules to form scale layer causing reduction in heat transfer and decline in MD flux (6%). Emulsified oil solution was responsible for partial pore clogging resulting in further 2% flux decline. Ethylenediaminetetraaceticacid (EDTA) was able to mask a portion of calcium ions and resulted in a complete recovery of the original MD flux. Under hybrid FO-MD experiments MD fluxes between 5.62 LMH and 11.12 LMH were achieved. Therefore, the novel concept is validated to produce fairly stable FO and MD fluxes, with few streams, without severe fouling and producing excellent product water quality.


Subject(s)
Distillation , Water Purification , Membranes, Artificial , Osmosis , Water
3.
Environ Sci Technol ; 53(7): 3488-3498, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30848585

ABSTRACT

In this study, we propose a novel module design to integrate forward osmosis (FO) and membrane distillation (MD). The two processes are sealed in one module and operated simultaneously, making the system compact and suitable for a wide range of applications. To evaluate the system under large-scale module operating conditions, FO and MD experiments were performed separately. The effect of draw solution (DS) temperature on the FO performance was first assessed in terms of flux, reverse salt flux (RSF), and specific RSF (SRSF). While a higher DS temperature resulted in an increased RSF, a higher FO flux was achieved, with a lower SRSF. The influence of DS concentration on the MD performance was then investigated in terms of flux and salt rejection. High DS concentration had a slightly negative impact on MD water vapor flux, but the MD membrane was a complete barrier for DS salts. The FO-MD integrated module was simulated based on mass balance equations. Results indicated that initial DS (MD feed) flow rate and concentration are the most important factors for stable operation of the integrated module. Higher initial DS flow rate and lower initial DS concentration can achieve a higher permeate rate of the FO-MD module.


Subject(s)
Distillation , Water Purification , Membranes, Artificial , Osmosis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...