Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569444

ABSTRACT

Increasing evidence suggests that exosomes are involved in retinal cell degeneration, including their insufficient release; hence, they have become important indicators of retinopathies. The exosomal microRNA (miRNA), in particular, play important roles in regulating ocular and retinal cell functions, including photoreceptor maturation, maintenance, and visual function. Here, we generated retinal organoids (ROs) from human induced pluripotent stem cells that differentiated in a conditioned medium for 60 days, after which exosomes were extracted from ROs (Exo-ROs). Subsequently, we intravitreally injected the Exo-RO solution into the eyes of the Royal College of Surgeons (RCS) rats. Intravitreal Exo-RO administration reduced photoreceptor apoptosis, prevented outer nuclear layer thinning, and preserved visual function in RCS rats. RNA sequencing and miRNA profiling showed that exosomal miRNAs are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway. In addition, the expression of MAPK-related genes and proteins was significantly decreased in the Exo-RO-treated group. These results suggest that Exo-ROs may be a potentially novel strategy for delaying retinal degeneration by targeting the MAPK signaling pathway.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , MicroRNAs , Retinal Degeneration , Surgeons , Rats , Humans , Animals , Retinal Degeneration/drug therapy , Retinal Degeneration/metabolism , Mitogen-Activated Protein Kinases , Exosomes/metabolism , Reactive Oxygen Species , Induced Pluripotent Stem Cells/metabolism
2.
Nanoscale ; 14(43): 16262-16269, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36285840

ABSTRACT

A rational design and cost-effective transition metal-based hollow nanostructures are important for sustainable energy materials with high efficiency. This study reports on carbon-incorporated Ni2P-Fe2P hollow nanorods ((Ni,Fe)2P/C HNRs) derived from a self-template approach as efficient electrocatalysts. Initially, a Ni2(BDC)2(DABCO)-MOF (Ni-MOF) is converted to NiFe-PBA hollow nanorods (HNRs) through facile ion exchange which was further converted to (Ni,Fe)2P/C HNRs via a subsequent phosphidation process. The resulting (Ni,Fe)2P/C HNRs exhibit remarkable activity for the oxygen evolution reaction in an alkaline solution requiring a small overpotential of 258 mV to drive a current density of 10 mA cm-2 and long-term stability with little deactivation after 40 h. (Ni,Fe)2P/C HNRs outperform (Ni,Fe)2P/C NPs and commercial RuO2. The unique hollow morphology and interfacial electronic structure substantially increase the active site and charge transfer rate of our electrocatalyst, resulting in excellent OER activity and stability.

3.
Respir Med ; 199: 106877, 2022 08.
Article in English | MEDLINE | ID: mdl-35606283

ABSTRACT

PURPOSE: Exacerbation of asthma is affected by genetic and environmental factors, but little is known about genetic differences according to smoking status. We evaluated genetic factors associated with asthma exacerbations in smokers and non-smokers, and identified the underlying mechanisms via a genome-wide association study (GWAS) and gene-level analyses according to smoking status. METHODS: A GWAS on the annual frequency of asthma exacerbations was performed in 420 non-smoking and 188 smoking patients with asthma. Gene-wise associations were analyzed by Multi-marker Analysis of GenoMic Annotation (MAGMA); Gene Ontology analysis was also performed. RESULTS: In the non-smoker group, 189 genes showed significant associations with the annual frequency of exacerbations (permutated P < 0.001). The top 10 genes were F5, KLRC1, TAFA2, AIRE, IER3IP1, CHMP2A, IL31RA, ZNF497, DNMT3L, and MYT1L (permutated P = 1.0 × 10-4 - 1.7 × 10-4). In smoking asthmatics, 140 genes-including KANK1, ZMYND12, ZNF34, ANXA11, VAV2, CCDC150, CCDC30, CATSPER3, ARMH2, and MPRIP (permutated P = 9.23 × 10-5 - 5.50 × 10-4)-were associated with asthma exacerbations. Genes participating in the innate immune response in non-smokers and the regulation of cell fate (including apoptosis) in smokers were the major causal genes of asthma exacerbation (FDR q < 0.05). CONCLUSIONS: Our findings not only suggest novel genetic candidates for predicting asthma exacerbations, but also that asthma treatment strategies should take into account smoking behavior.


Subject(s)
Asthma , Genome-Wide Association Study , Adaptor Proteins, Signal Transducing , Asthma/genetics , Cytoskeletal Proteins/genetics , Humans , Ion Channels/genetics , Smokers
4.
Cancer Res ; 82(8): 1534-1547, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35404406

ABSTRACT

EGFR inhibitors (EGFRi) are standard-of-care treatments administered to patients with non-small cell lung cancer (NSCLC) that harbor EGFR alterations. However, development of resistance posttreatment remains a major challenge. Multiple mechanisms can promote survival of EGFRi-treated NSCLC cells, including secondary mutations in EGFR and activation of bypass tracks that circumvent the requirement for EGFR signaling. Nevertheless, the mechanisms involved in bypass signaling activation are understudied and require further elucidation. In this study, we identify that loss of an epigenetic factor, lysine methyltransferase 5C (KMT5C), drives resistance of NSCLC to multiple EGFRis, including erlotinib, gefitinib, afatinib, and osimertinib. KMT5C catalyzed trimethylation of histone H4 lysine 20 (H4K20), a modification required for gene repression and maintenance of heterochromatin. Loss of KMT5C led to upregulation of an oncogenic long noncoding RNA, LINC01510, that promoted transcription of the oncogene MET, a component of a major bypass mechanism involved in EGFRi resistance. These findings underscore the loss of KMT5C as a critical event in driving EGFRi resistance by promoting a LINC01510/MET axis, providing mechanistic insights that could help improve NSCLC treatment. SIGNIFICANCE: Dysregulation of the epigenetic modifier KMT5C can drive MET-mediated EGFRi resistance, implicating KMT5C loss as a putative biomarker of resistance and H4K20 methylation as a potential target in EGFRi-resistant lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Histone-Lysine N-Methyltransferase , Lung Neoplasms , Proto-Oncogene Proteins c-met , RNA, Long Noncoding , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Histone-Lysine N-Methyltransferase/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lysine/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/genetics , RNA, Long Noncoding/genetics , Up-Regulation
5.
Nanoscale ; 13(8): 4569-4575, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33599645

ABSTRACT

The development of an efficient electrocatalyst is an important requirement for water splitting systems to produce clean and sustainable hydrogen fuel. Herein, we synthesized CoP2/Fe-CoP2 yolk-shell nanoboxes (YSBs) as efficient electrocatalysts for the oxygen evolution reaction (OER). Initially, zeolitic imidazolate framework-67/CoFe-Prussian blue analogue (ZIF-67/CoFe-PBA) YSBs were prepared by the reaction of ZIF-67 and [Fe(CN)6]3- ions in the presence of a small amount of water as an etching agent. The size of the CoP2 yolk depends on the amount of water. The heteronanostructure composed of the CoP2 yolk and the FexCo1-xP2 shell with a cubic shape was obtained by phosphidation of ZIF-67/CoFe-PBA YSBs. Benefiting from the unique structure and chemical composition, the CoP2/Fe-CoP2 YSB electrocatalyst has a large specific surface area of 114 m2 g-1 and shows superior electrocatalytic performances for the OER such as a low overpotential of 266 mV, a small Tafel slope value of 68.1 mV dec-1, and excellent cyclic stability.

6.
Korean J Intern Med ; 36(4): 914-923, 2021 07.
Article in English | MEDLINE | ID: mdl-32951408

ABSTRACT

BACKGROUND/AIMS: Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a major regulator of Wnt signaling, which is involved in fibroblast dysfunction. Because its role has not been evaluated in idiopathic pulmonary fibrosis (IPF), we examined the clinical implications of ROR2 expression. METHODS: ROR2 mRNA expression was measured using reverse transcription polymerase chain reaction in lung tissue-derived fibroblasts from IPF patients (n = 14) and from controls (n = 10). ROR2 protein was measured using enzyme-linked immunosorbent assay in primary fibroblasts from IPF patients (n = 14) and controls (n = 10), and in bronchoalveolar lavage (BAL) fluids obtained from normal controls (NC; n = 30). IPF patients (n = 84), and other patients with interstitial lung diseases, including nonspecific interstitial pneumonia (NSIP; n = 10), hypersensitivity pneumonitis (HP; n = 10), and sarcoidosis (n = 10). RESULTS: ROR2 mRNA and protein levels were significantly higher in IPF fibroblasts than in controls (p = 0.003, p = 0.0017, respectively). ROR2 protein levels in BAL fluids from patients with IPF were significantly higher than in those from NC (p < 0.001), and from patients with NSIP (p = 0.006), HP (p = 0.004), or sarcoidosis (p = 0.004). Receiver operating characteristic curves showed a clear difference between IPF and NC in ROR2 protein level (area under the curve, 0.890; confidence interval, 0.829 to 0.950; p < 0.001). ROR2 protein levels were significantly higher in GAP stage III than in GAP stages I and II (p = 0.016). CONCLUSION: ROR2 may be related to the development of IPF, and its protein level may be a useful and severity-dependent candidate marker for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Receptor Tyrosine Kinase-like Orphan Receptors , Bronchoalveolar Lavage Fluid , Humans , Idiopathic Pulmonary Fibrosis/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Up-Regulation
7.
BMC Med Inform Decis Mak ; 20(1): 320, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33272256

ABSTRACT

BACKGROUND: The impact of adjuvant chemotherapy or radiation therapy on the survival of patients with synovial sarcoma (SS), which is a rare soft-tissue sarcoma, remains controversial. Bayesian statistical approaches and propensity score matching can be employed to infer treatment effects using observational data. Thus, this study aimed to identify the individual treatment effects of adjuvant therapies on the overall survival of SS patients and recognize subgroups of patients who can benefit from specific treatments using Bayesian subgroup analyses. METHODS: We analyzed data from patients with SS obtained from the surveillance, epidemiology, and end results (SEER) public database. These data were collected between 1984 and 2014. The treatment effects of chemotherapy and radiation therapy on overall survival were evaluated using propensity score matching. Subgroups that could benefit from radiation therapy or chemotherapy were identified using Bayesian subgroup analyses. RESULTS: Based on a stratified Kaplan-Meier curve, chemotherapy exhibited a positive average causal effect on survival in patients with SS, whereas radiation therapy did not. The optimal subgroup for chemotherapy includes the following covariates: older than 20 years, male, large tumor (longest diameter > 5 cm), advanced stage (SEER 3), extremity location, and spindle cell type. The optimal subgroup for radiation therapy includes the following covariates: older than 20 years, male, large tumor (longest diameter > 5 cm), early stage (SEER 1), extremity location, and biphasic type. CONCLUSION: In this study, we identified high-risk patients whose variables include age (age > 20 years), gender, tumor size, tumor location, and poor prognosis without adjuvant treatment. Radiation therapy should be considered in the early stages for high-risk patients with biphasic types. Conversely, chemotherapy should be considered for late-stage high-risk SS patients with spindle cell types.


Subject(s)
Chemotherapy, Adjuvant/methods , Radiotherapy/methods , Sarcoma, Synovial/therapy , Bayes Theorem , Combined Modality Therapy , Female , Humans , Kaplan-Meier Estimate , Male , Retrospective Studies , Sarcoma, Synovial/mortality , Sarcoma, Synovial/pathology , Survival Rate , Treatment Outcome
8.
DNA Cell Biol ; 38(9): 905-914, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31305135

ABSTRACT

Our previous transcriptome study of cultured fibroblasts identified 178 genes that were differentially expressed by 8 idiopathic pulmonary fibrosis (IPF) fibroblasts compared with 4 controls. Here, we performed genome-wide DNA methylation analysis to evaluate the relationship of CpG methylation to differential gene expression. Among 485,577 loci, 5850 loci on 2282 genes showed significant differences between the 2 groups (delta-beta >10.21 and p-value <0.05). Among these, beta values of 80 CpGs (30 hypermethylated and 50 hypomethylated) were significantly correlated with mRNA expression of 34 genes (19.1%) of the 178 differentially expressed genes between the 2 groups (13 downregulated and 21 upregulated). Gene ontology enrichment of these genes included cell adhesion, molecule binding, chemical homeostasis, surfactant homeostasis, and receptor binding. One-third of them are involved in the known process of fibrosis; the others are novel genes with respect to pulmonary fibrosis. We identified relationships between the altered DNA methylation levels and about one-fifth of the corresponding changes in gene expression by lung tissue fibroblasts. Findings from this study provide new information on novel genes responsible for the pathogenesis of IPF under the control of CpG methylation changes in IPF lungs.


Subject(s)
DNA Methylation , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , Fibroblasts/pathology , Humans
9.
DNA Cell Biol ; 38(1): 76-84, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30526007

ABSTRACT

Asthma exacerbation is induced by the interaction of genes and environmental factors such as cigarette smoke. NLRP4 counteracts the activity of the inflammasome, which is responsible for asthma exacerbation. In this study, we analyzed the association of single-nucleotide polymorphisms of NLRP4 with the annual rate of exacerbation and evaluated the additive effect of smoking in 1454 asthmatics. Asthmatics possessing the minor allele of rs1696718G > A had more frequent exacerbation episodes than those homozygous for the common allele (0.59 vs. 0.36/year) and the association was present only in current and ex-smokers. There was a significant interaction between the amount smoked and rs16986718 genotypes (p = 0.014) and a positive correlation between the number of annual exacerbation episodes and amount smoked only in rs16986718G > A AA homozygotes. The prevalence of frequent exacerbators (≥2 exacerbation episodes/year) was 2.5 times higher in rs16986718G > A minor allele homozygotes than in common allele homozygotes (12.0% vs. 5.9%). Furthermore, the prevalence was 6 times higher in rs16986718G > A minor allele homozygotes who were current and ex-smokers than in nonsmokers (25.6% vs. 4.1%). The minor allele of rs16986718G > A in NLRP4 may be a genetic marker that predicts asthma exacerbation in adult asthmatics who smoke.


Subject(s)
Asthma/genetics , Repressor Proteins/genetics , Smoking/adverse effects , Adaptor Proteins, Signal Transducing , Adult , Alleles , Asthma/epidemiology , Asthma/etiology , Female , Gene-Environment Interaction , Genetic Variation , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Prevalence , Young Adult
10.
BMC Pulm Med ; 17(1): 210, 2017 Dec 16.
Article in English | MEDLINE | ID: mdl-29246216

ABSTRACT

BACKGROUND: We previously reported that the ILVBL gene on chromosome 19p13.1 was associated with the risk for aspirin-exacerbated respiratory disease (AERD) and the percent decline of forced expired volume in one second (FEV1) after an oral aspirin challenge test. In this study, we confirmed the association between polymorphisms and haplotypes of the ILVBL gene and the risk for AERD and its phenotype. METHODS: We recruited 141 AERD and 995 aspirin-tolerant asthmatic (ATA) subjects. All study subjects underwent an oral aspirin challenge (OAC). Nine single nucleotide polymorphisms (SNPs) with minor allele frequencies above 0.05, which were present in the region from 2 kb upstream to 0.5 kb downstream of ILVBL in Asian populations, were selected and genotyped. RESULTS: In an allelic association analysis, seven of nine SNPs were significantly associated with the risk for AERD after correction for multiple comparisons. In a codominant model, the five SNPs making up block2 (rs2240299, rs7507755, rs1468198, rs2074261, and rs13301) showed significant associations with the risk for AERD (corrected P = 0.001-0.004, OR = 0.59-0.64). Rs1468198 was also significantly associated with the percent decline in FEV1 in OAC tests after correction for multiple comparisons in the codominant model (corrected P = 0.033), but the other four SNPs in hapblock2 were not. CONCLUSION: To the best of our knowledge, this is the first report of an association between SNPs on ILVBL and AERD. SNPs on ILVBL could be promising genetic markers of this condition.


Subject(s)
Acetolactate Synthase/genetics , Aspirin/adverse effects , Asthma, Aspirin-Induced/genetics , Asthma, Aspirin-Induced/physiopathology , Polymorphism, Single Nucleotide , Adult , Biomarkers , Female , Forced Expiratory Volume , Gene Frequency , Haplotypes , Humans , Male , Middle Aged , Republic of Korea
11.
Respir Med ; 129: 85-90, 2017 08.
Article in English | MEDLINE | ID: mdl-28732840

ABSTRACT

BACKGROUND: Interleukin-32(IL-32)γ is a pro-inflammatory cytokine involved in the development and severity of chronic inflammatory diseases, but its role in asthma is unclear. OBJECTIVE: This study was conducted to evaluate the relationship of IL-32γ levels in sputum with the severity of asthma. METHODS: IL-32γ levels in the supernatant of induced sputum obtained from 89 patients with stable asthma were measured using a sandwich enzyme-linked immunosorbent assay (ELISA). The relationships between sputum IL-32γ levels and baseline forced expiratory volume in 1 s (FEV1% pred.), inflammatory cell profiles in sputum, and annual frequency of asthma exacerbation were determined. RESULTS: IL-32γ was detected in the sputum of 25 of 89 (28.1%) asthma patients, and the levels of sputum were negatively correlated with FEV1% pred. (ρ = -0.312, p = 0.003). The annual exacerbation rate was significantly higher in this group than in the IL-32-negative group (n = 64) (p = 0.03). Sputum IL-32γ levels correlated well with the annual exacerbation rate (ρ = 0.261, p = 0.014), but there were no differences in the inflammatory cell profiles in the induced sputum of IL-32-positive and IL-32-negative patients. CONCLUSION: The level of IL-32γ in induced sputum may be associated with asthma severity and related with higher risk of asthma exacerbation.


Subject(s)
Asthma/immunology , Interleukins/analysis , Sputum/cytology , Sputum/metabolism , Adult , Asthma/metabolism , Asthma/physiopathology , Disease Progression , Female , Forced Expiratory Volume/drug effects , Humans , Inflammation/immunology , Inflammation/pathology , Male , Middle Aged , Respiratory Function Tests/methods , Severity of Illness Index
12.
Respir Med ; 123: 71-78, 2017 02.
Article in English | MEDLINE | ID: mdl-28137499

ABSTRACT

BACKGROUND: Aspirin-exacerbated respiratory diseases (AERD) are caused by ingestion of non-steroidal anti-inflammatory drugs and are characterized by acute bronchospasms and marked infiltration of eosinophils, the latter being attributable to altered synthesis of cysteinyl leukotrienes (LT) and prostaglandins (PG). Recently, the innate Th2 response is revealed to induce eosinophil infiltration in allergic inflammation, however the role of the innate Th2 response has not been studies in AERD. Thus, we evaluated the relationship between the innate Th2 cytokines including IL-25, thymic stromal lymphopoietin (TSLP) and IL-33 and the development of AERD. METHODS AND MATERIALS: Plasma IL-25, IL-33, and TSLP levels were measured before and after aspirin challenge in subjects with AERD (n = 25) and aspirin-tolerant asthma (ATA, n = 25) by enzyme-linked immunosorbent assay (ELISA). Pre and post-aspirin challenge levels of LTC4 and PGD2 were measured using ELISA. RESULTS: Basal plasma IL-25 levels were significantly higher in AERD group than in normal controls and in ATA group (p = 0.025 and 0.031, respectively). IL-33 and TSLP levels were comparable in the AERD and ATA groups. After the aspirin challenge, the IL-25 levels were markedly decreased in the ATA group (p = 0.024), while not changed in the AERD group. The post-challenge IL-25 levels of all asthmatic subjects were significantly correlated with aspirin challenge - induced declines in FEV1 (r = 0.357, p = 0.011), but not with basal and post challenge LTC4 and PGD2 levels. CONCLUSIONS: IL-25 is associated with bronchospasm after aspirin challenge, possibly via mechanisms other than altered LTC4 and PGD2 production.


Subject(s)
Asthma, Aspirin-Induced/immunology , Interleukin-17/blood , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Asthma, Aspirin-Induced/blood , Asthma, Aspirin-Induced/physiopathology , Cytokines/blood , Female , Forced Expiratory Volume/drug effects , Forced Expiratory Volume/immunology , Humans , Immunity, Innate/drug effects , Interleukin-33/blood , Leukotriene C4/blood , Male , Middle Aged , Prostaglandin D2/blood , Thymic Stromal Lymphopoietin
13.
Arch Pharm Res ; 39(3): 370-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26590968

ABSTRACT

Ultraviolet radiation resistance-associated gene product (UVRAG) was originally identified as a protein involved in cellular responses to UV irradiation. Subsequent studies have demonstrated that UVRAG plays as an important role in autophagy, a lysosome-dependent catabolic program, as a part of a pro-autophagy PIK3C3/VPS34 lipid kinase complex. Several recent studies have shown that UVRAG is also involved in autophagy-independent cellular functions, such as DNA repair/stability and vesicular trafficking/fusion. Here, we examined the UVRAG protein interactome to obtain information about its functional network. To this end, we screened UVRAG-interacting proteins using a tandem affinity purification method coupled with MALDI-TOF/MS analysis. Our results demonstrate that UVRAG interacts with various proteins involved in a wide spectrum of cellular functions, including genome stability, protein translational elongation, protein localization (trafficking), vacuole organization, transmembrane transport as well as autophagy. Notably, the interactome list of high-confidence UVRAG-interacting proteins is enriched for proteins involved in the regulation of genome stability. Our systematic UVRAG interactome analysis should provide important clues for understanding a variety of UVRAG functions.


Subject(s)
Protein Interaction Mapping/methods , Proteins/isolation & purification , Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cells, Cultured , Etoposide/pharmacology , Fibroblasts/metabolism , Humans , Ku Autoantigen/metabolism , Mice , Protein Binding/drug effects
14.
J Food Sci ; 80(6): C1178-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25920926

ABSTRACT

This work aimed to determine the effects of different concentrations of antibrowning treatments (that is, distilled water [DW], 1% ascorbic acid [AA], 0.5% chamomile [CM], and 1% AA + 0.5% CM) and heat-treatment (55 °C for 45 s) combined with packaging under 4 different modified-atmosphere gas compositions (that is, air, vacuum, 100% CO2 , 50% CO2 /50% N2 ) on the quality and microbiological characteristics of fresh-cut lotus root. The quality characteristics (that is, color, weight loss, texture, pH, polyphenoloxidase activity, and total phenolic content) of the AA + CM-dipped sample in 100% CO2 packaging were maintained significantly better than those of the other samples (P < 0.05). The microbiological counts observed in the DW-dipped sample during storage were higher than those of the AA, CM, and AA + CM samples, and heat-treatment retarded the microbiological deterioration of fresh-cut lotus root. Therefore, the results revealed that dipping in an antibrowning treatment (AA + CM), and 100% CO2 MAP with heat treatment effectively extend the shelf life of fresh-cut lotus root to 21 d at 5 °C.


Subject(s)
Food Analysis , Food Microbiology , Food Packaging/methods , Food Preservation/methods , Food-Processing Industry/methods , Hot Temperature , Lotus , Ascorbic Acid , Atmosphere , Carbon Dioxide , Chamomile , Humans , Lotus/microbiology , Plant Roots/microbiology , Vacuum , Vegetables/microbiology , Vegetables/standards , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...