Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 10: 93, 2024.
Article in English | MEDLINE | ID: mdl-38962473

ABSTRACT

The energy devices for generation, conversion, and storage of electricity are widely used across diverse aspects of human life and various industry. Three-dimensional (3D) printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales. 3D-printed energy devices can have intricate 3D structures for significant performance enhancement, which are otherwise impossible to achieve through conventional manufacturing methods. Furthermore, recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances. While existing literature focuses mostly on specific aspects of individual printed energy devices, a brief overview collectively covering the wide landscape of energy applications is lacking. This review provides a concise summary of recent advancements of 3D-printed energy devices. We classify these devices into three functional categories; generation, conversion, and storage of energy, offering insight on the recent progress within each category. Furthermore, current challenges and future prospects associated with 3D-printed energy devices are discussed, emphasizing their potential to advance sustainable energy solutions.

2.
Radiat Prot Dosimetry ; 200(8): 745-754, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38702838

ABSTRACT

This study analysed the occupational dose in Korean pressurized heavy-water reactors (PHWRs) and identified tasks involving high radiation exposure. The average individual dose was sufficiently low to be below the annual effective dose limit for radiation workers and is even lower than the dose limit for the general public. However, some workers received relatively higher doses than others. Furthermore, most PHWR workers are exposed to radiation during planned maintenance periods. In this study, the radiation dose was normalized (radiation dose per unit time) to determine the high-radiation-exposure tasks in Korean PHWRs. Consequently, end-fitting lapping, delayed neutron tube work and fuel channel fixed-end change tasks were identified as high-radiation-exposure tasks in Korean PHWRs. If appropriate radiation protection measures are prioritized for the identified high-dose exposure tasks, optimization of radiological protection will be effectively achieved by reducing the dose that is relatively higher than the average.


Subject(s)
Occupational Exposure , Radiation Dosage , Radiation Monitoring , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Humans , Republic of Korea , Radiation Monitoring/methods , Radiation Monitoring/instrumentation , Radiation Protection/instrumentation , Radiation Exposure/analysis , Nuclear Reactors , Water
3.
Adv Sci (Weinh) ; 10(28): e2301609, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544923

ABSTRACT

With rapid urbanization and global population growth, the amount of wasted aluminum foil is significantly increasing. Most deformed and contaminated foil is difficult to recycle; hence, it is landfilled or incinerated, causing environmental pollution. Therefore, using aluminum foil waste for electricity may be conducive to addressing environmental problems. In this regard, various literatures have explored the concept of energy generation using foil, while a crumple ball design for this purpose has not been studied. Thus, a recycled foil-based crumpled ball triboelectric nanogenerator (RFCB-TENG) is proposed. The crumpled ball design can minimize the effects of contamination on foil, ensuring efficient power output. Moreover, owing to novel crumpled design, the RFCB-TENG has some outstanding characteristics to become a sustainable power source, such as ultralight weight, low noise, and high durability. By introducing the air-breakdown model, the RFCB-TENG achieved an output peak voltage of 648 V, a current of 8.1 mA cm3 , and an optimum power of 162.7 mW cm3 . The structure of the RFCB-TENG is systemically optimized depending on the design parameters to realize the optimum output performance. Finally, the RFCB-TENG operated 500 LEDs and 30-W commercial lamps. This work paves the guideline for effectively fabricating the TENG using waste-materials while exhibiting outstanding characteristics.

4.
Adv Mater ; 35(24): e2300283, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933229

ABSTRACT

Currently, wind energy harvesting is in the limelight. However, with the existing electromagnetic wind generators, it is difficult to harvest multifariously-wasted breezes. To harvest energy from winds at a wide range of speeds, wind-driven triboelectric nanogenerators (TENGs) are studied. However, a critical limitation of general wind-driven TENGs is that their power output is low. Therefore, an innovative strategy is necessary to generate high output power even from breeze. Herein, an approach to test a charge-polarization-based flutter-driven TENG (CPF-TENG) with ambient air ionizing channel (AAIC) is reported. Owing to AAIC, the device generates peak voltage and current outputs of 2000 V and 4 A, respectively. Moreover, because the proposed CPF-TENG can generate power from breeze, it can be stacked in series to completely harvest wind energy. The stacked CPF-TENG is demonstrated to operate 3000 light-emitting diodes (LEDs) and 12 hygrometers, separately, and produce hydrogen at a rate of 342.3 µL h-1 with the electrolysis cell.

5.
J Back Musculoskelet Rehabil ; 30(2): 371-381, 2017.
Article in English | MEDLINE | ID: mdl-28282797

ABSTRACT

BACKGROUND: Management of a knee contracture is important for regaining gait ability in transtibial amputees. However, there has been little study of prosthesis training for enhancing mobility and improving range of motion in cases of restricted knee extension. OBJECTIVE: This study aimed to evaluate the effects of adaptive training for an assist device (ATAD) for a transtibial amputee with a knee flexion contracture (KFC). A male transtibial amputee with KFC performed 4 months of ATAD with a multidisciplinary team. During the ATAD, the passive range of motion (PROM) in the knee, amputee mobility predictor (AMP) assessment, center of pressure (COP) on a force plate-equipped treadmill, gait features determined by three-dimensional motion analysis, and Short-Form 36 Item Health Survey (SF-36) scores were evaluated. RESULTS: Following ATAD, PROM showed immediate improvement (135.6 ± 2.4° at baseline, 142.5 ± 1.7° at Step 1, 152.1 ± 1.8° at Step 2, 165.8 ± 1.9° at Step 3, and 166.0 ± 1.4° at Step 4); this was followed by an enhanced COP. Gradually, gait features also improved. Additionally, the AMP score (5 at baseline to 29 at Step 4) and K-level (K0 at baseline to K3 at Step 4) increased after ATAD. Along with these improvements, the SF-36 score also improved. CONCLUSIONS: ATAD could be beneficial for transtibial amputees by relieving knee contractures and improving gait.


Subject(s)
Amputees , Artificial Limbs , Contracture/rehabilitation , Exercise Therapy/methods , Gait/physiology , Knee Joint/physiopathology , Walking/physiology , Biomechanical Phenomena/physiology , Exercise Test , Humans , Male , Range of Motion, Articular/physiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...