Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(5): e0302129, 2024.
Article in English | MEDLINE | ID: mdl-38753705

ABSTRACT

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Genomics/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Sensitivity and Specificity , Algorithms , Multiplex Polymerase Chain Reaction/methods , Liquid Biopsy/methods
2.
PLoS One ; 15(6): e0233810, 2020.
Article in English | MEDLINE | ID: mdl-32525888

ABSTRACT

Limited resources and increased patient flow highlight the importance of optimizing healthcare operational systems to improve patient care. Accurate prediction of exam volumes, workflow surges and, most notably, patient delay and wait times are known to have significant impact on quality of care and patient satisfaction. The main objective of this work was to investigate the choice of different operational features to achieve (1) more accurate and concise process models and (2) more effective interventions. To exclude process modelling bias, data from four different workflows was considered, including a mix of walk-in, scheduled, and hybrid facilities. A total of 84 features were computed, based on previous literature and our independent work, all derivable from a typical Hospital Information System. The features were categorized by five subgroups: congestion, customer, resource, task and time features. Two models were used in the feature selection process: linear regression and random forest. Independent of workflow and the model used for selection, it was determined that congestion feature sets lead to models most predictive for operational processes, with a smaller number of predictors.


Subject(s)
Logistic Models , Patient Care Planning/statistics & numerical data , Workflow , Appointments and Schedules , Hospital Information Systems/statistics & numerical data , Machine Learning , Patient Care Planning/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL