Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924525

ABSTRACT

Microbiota plays a critical role in the overall growth performance and health status of dairy cows, especially during their early life. Several studies have reported that fecal microbiome of neonatal calves is shifted by various factors such as diarrhea, antibiotic treatment, or environmental changes. Despite the importance of gut microbiome, a lack of knowledge regarding the composition and functions of microbiota impedes the development of new strategies for improving growth performance and disease resistance during the neonatal calf period. In this study, we utilized next-generation sequencing to monitor the time-dependent dynamics of the gut microbiota of dairy calves before weaning (1-8 weeks of age) and further investigated the microbiome changes caused by diarrhea. Metagenomic analysis revealed that continuous changes, including increasing gut microbiome diversity, occurred from 1 to 5 weeks of age. However, the composition and diversity of the fecal microbiome did not change after 6 weeks of age. The most prominent changes in the fecal microbiome composition caused by aging at family level were a decreased abundance of Bacteroidaceae and Enterobacteriaceae and an increased abundance of Prevotellaceae. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis indicated that the abundance of microbial genes associated with various metabolic pathways changed with aging. All calves with diarrhea symptoms showed drastic microbiome changes and about a week later returned to the microbiome of pre-diarrheal stage regardless of age. At phylum level, abundance of Bacteroidetes was decreased (p = 0.09) and that of Proteobacteria increased (p = 0.07) during diarrhea. PICRUSt analysis indicated that microbial metabolism-related genes, such as starch and sucrose metabolism, sphingolipid metabolism, alanine aspartate, and glutamate metabolism were significantly altered in diarrheal calves. Together, these results highlight the important implications of gut microbiota in gut metabolism and health status of neonatal dairy calves.

2.
Animals (Basel) ; 11(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374309

ABSTRACT

Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.

3.
Animals (Basel) ; 10(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825581

ABSTRACT

Weaned calves are susceptible to infectious diseases because of the stress and malnutrition that occurs during weaning. Therefore, the dairy industry requires effective feed additives to ameliorate stress responses and promote immunity. This study aimed to investigate the effects of hydrolyzed yeast (HY) supplementation on the growth performance, immune and stress parameters, and health status of calves after weaning. Eighteen Holstein calves were randomly assigned to two groups, either receiving a control calf starter or 0.2% HY calf starter from one week of age. All calves were weaned at six weeks of age as a stress challenge. The HY-fed calves had a significantly-higher body weight gain during the post-weaning period (kg/week) compared to the control. Cortisol levels at three days post-weaning (DPW) were significantly lower in the HY group than the control group. Calves fed HY had significantly-higher serum levels of tumor necrosis factor-α and interleukin-1ß at one DPW. The HY-fed calves also had higher concentrations of the acute-phase proteins, haptoglobin, serum amyloid A, and transferrin at one DPW. In addition, the diarrhea severity in HY-fed calves was milder after weaning compared to the control group. Our results indicate that HY supplementation reduces stress responses and may promote innate immunity in newly-weaned calves.

4.
Animals (Basel) ; 10(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630754

ABSTRACT

The microbial community within the rumen can be changed and shaped by heat stress. Accumulating data have suggested that different breeds of dairy cows have differential heat stress resistance; however, the underlying mechanism by which nonanimal factors contribute to heat stress are yet to be understood. This study is designed to determine changes in the rumen microbiome of Holstein and Jersey cows to normal and heat stress conditions. Under heat stress conditions, Holstein cows had a significantly higher respiration rate than Jersey cows. Heat stress increased the rectal temperature of Holstein but not Jersey cows. In the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, Jersey cows had a significantly higher proportion of genes associated with energy metabolism in the normal condition than that with other treatments. Linear discriminant analysis effect size (LEfSe) results identified six taxa as distinguishing taxa between normal and heat stress conditions in Holstein cows; in Jersey cows, 29 such taxa were identified. Changes in the rumen bacterial taxa were more sensitive to heat stress in Jersey cows than in Holstein cows, suggesting that the rumen mechanism is different in both breeds in adapting to heat stress. Collectively, distinct changes in rumen bacterial taxa and functional gene abundance in Jersey cows may be associated with better adaptation ability to heat stress.

5.
Genes Genomics ; 40(11): 1249-1258, 2018 11.
Article in English | MEDLINE | ID: mdl-30099720

ABSTRACT

The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju × Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas r2 values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (- 0.009) than in Jeju crossbred (- 0.035) and Jeju horse (- 0.038). FST value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.


Subject(s)
Horses/genetics , Polymorphism, Single Nucleotide , Animals , Body Size/genetics , Crosses, Genetic , Genome , Genotyping Techniques/standards , Heterozygote , Inbreeding , Linkage Disequilibrium , Oligonucleotide Array Sequence Analysis , Principal Component Analysis
6.
Asian-Australas J Anim Sci ; 31(8): 1098-1102, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29642687

ABSTRACT

OBJECTIVE: Temperament can be defined as a type of behavioral tendency that appears in a relatively stable manner in responses to various external stimuli over time. The aim of this study was to estimate genetic parameters for the records of temperament testing that are used to improve the temperament of Jeju crossbred (Jeju×Thoroughbred) horses. METHODS: This study was conducted using 205 horses (101 females and 104 males) produced between 2010 and 2015. The experimental animals were imprinted and tamed according to the Manual for Horse Taming and Evaluation for Therapeutic Riding Horses and evaluated according to the categories for temperament testing (gentleness, patience, aggressiveness, sensitivity, and friendliness) between 15 months and 18 months of age. Each category was scored on a five-point linear scale. Genetic parameters for the test categories were analyzed using a multi-trait mixed model with repeated records. The ASReml program was used to analyze the data. RESULTS: The heritability of gentleness, patience, aggressiveness, sensitivity and friendliness ranged from 0.08 to 0.53. The standard errors of estimated heritability ranged from 0.13 to 0.17. The test categories showed high genetic correlations with each other, ranging from 0.96 to 0.99 and high repeatability, ranging from 0.70 to 0.73. CONCLUSION: The results of this study showed that the test categories had moderate heritability and high genetic correlations, but additional studies may be necessary to use the results for the improvement programs of the temperament of Jeju crossbred horses.

8.
Asian-Australas J Anim Sci ; 30(8): 1061-1065, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28111443

ABSTRACT

OBJECTIVE: This study was conducted to locate quantitative trait loci (QTL) influencing fatty acid (FA) composition in a large F2 intercross between Landrace and Korean native pigs. METHODS: Eighteen FA composition traits were measured in more than 960 F2 progeny. All experimental animals were genotyped with 165 microsatellite markers located throughout the pig autosomes. RESULTS: We detected 112 QTLs for the FA composition; Forty seven QTLs reached the genome-wide significant threshold. In particular, we identified a cluster of highly significant QTLs for FA composition on SSC12. QTL for polyunsaturated fatty acid on pig chromosome 12 (F-value = 97.2 under additive and dominance model, nominal p-value 3.6×10-39) accounted for 16.9% of phenotypic variance. In addition, four more QTLs for C18:1, C18:2, C20:4, and monounsaturated fatty acids on the similar position explained more than 10% of phenotypic variance. CONCLUSION: Our findings of a major QTL for FA composition presented here could provide helpful information to locate causative variants to improve meat quality traits in pigs.

9.
Genome Biol Evol ; 6(6): 1366-74, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24920005

ABSTRACT

Holstein is known to provide higher milk yields than most other cattle breeds, and the dominant position of Holstein today is the result of various selection pressures. Holstein cattle have undergone intensive selection for milk production in recent decades, which has left genome-wide footprints of domestication. To further characterize the bovine genome, we performed whole-genome resequencing analysis of 10 Holstein and 11 Hanwoo cattle to identify regions containing genes as outliers in Holstein, including CSN1S1, CSN2, CSN3, and KIT whose products are likely involved in the yield and proteins of milk and their distinctive black-and-white markings. In addition, genes indicative of positive selection were associated with cardiovascular disease, which is related to simultaneous propagation of genetic defects, also known as inbreeding depression in Holstein.


Subject(s)
Milk Proteins/genetics , Milk/metabolism , Animals , Breeding , Cattle , Genome , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...