Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Food Chem ; 456: 139872, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38865818

ABSTRACT

The release of hydrogen cyanide (HCN) after food ingestion can pose a serious health risk to consumers. This study aimed to simultaneously quantify four cyanogenic glycosides (lotaustralin, prunasin, taxiphyllin, and dhurrin) using liquid chromatography-tandem mass spectrometry. The analysis scope extended beyond agricultural products to various consumer foods to estimate dietary exposure to cyanogenic glycosides and assess its risk levels. The major exposure sources are cassava chips (lotaustralin), apples (seeds) (prunasin and dhurrin), and Prunus mume axis (taxiphyllin). In addition to quantifying specific cyanogenic glycosides, this study proposed the development of a preliminary risk assessment framework based on the dietary exposure assessment and the calculation of theoretical levels of HCN derived from cyanogenic glycoside concentrations. In the absence of established guidelines for the permissible intake of foods containing cyanogenic glycosides, this study provides initial guidance for assessing the risks associated with a range of commonly consumed foods.

2.
ACS Omega ; 9(11): 12689-12697, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524422

ABSTRACT

Biomatrix-based reference materials (RMs) improve the quality of laboratory test results by better representing actual samples. However, a matrix RM of ephedrine (EP) for threshold substances that require accurate analysis results has not yet been developed. Therefore, this study aimed to develop an in-house matrix RM for EP and subsequently apply it to analytical procedures. During the development of the in-house matrix EP RM, the system underwent homogeneity and stability studies. Additionally, it was subjected to interlaboratory comparison study in 11 laboratories, including 10 World Anti-Doping Agency (WADA)-accredited laboratories and our laboratory. Stability testing revealed no significant changes in the RM characteristics. For homogeneity, 10 random batches out of 200 were analyzed to confirm the uniformity within and between bottles. These results, combined with data from 11 laboratories, ensured retroactive validation. The traceability value of the in-house matrix EP RM was assigned as 9.83 ± 0.57 µg/mL (k = 2) by interlaboratory comparison studies and traceable uncertain evaluation. The feasibility of this method as a single calibration standard was confirmed in two laboratories. This substance is reliable and consistent for quality control during EP quantification, ensuring accurate and trustworthy outcomes. Consequently, this study establishes a framework and guidelines for producing in-house matrix RMs and serves as a reference for generating similar matrix RMs in other contexts.

3.
Article in English | MEDLINE | ID: mdl-38382158

ABSTRACT

BACKGROUND: TB-500 (Ac-LKKTETQ), derived from the active site of thymosin ß4 (Tß4), has various biological functions in its unacetylated form, LKKTETQ. These functions include actin binding, dermal wound healing, angiogenesis, and skin repair. The biological effects of TB-500, however, have not been documented. And the analysis of TB-500 and its metabolites have been neither simultaneously quantified nor structurally identified using synthesized authentic standards. METHODS: This study was aimed to investigating simultaneous analytical methods of TB-500 and its metabolites in in-vitro and urine samples by using UHPLC-Q-Exactive orbitrap MS, and to comparing the biological activity of its metabolites with the parent TB-500. The metabolism of TB-500 was investigated in human serum, various in-vitro enzyme systems, and urine samples from rats treated with TB-500, and their biological activities measured by cytotoxicity and wound healing experiments were also evaluated in fibroblasts. RESULTS: The simultaneous analytical method for TB-500 and its metabolites was developed and validated. The study found that Ac-LK was the primary metabolite with the highest concentration in rats at 0-6 h intervals. Also, the metabolite Ac-LKK was a long-term metabolite of TB-500 detected up to 72 hr. No cytotoxicity of the parent and its metabolites was found. Ac-LKKTE only showed a significant wound healing activity compared to the control. CONCLUSION: The study provides a valuable tool for quantifying TB-500 and its metabolites, contributing to the understanding of metabolism and potential therapeutic applications. Our results also suggest that the previously reported wound-healing activity of TB-500 in literature may be due to its metabolite Ac-LKKTE rather than the parent form.


Subject(s)
Tandem Mass Spectrometry , Wound Healing , Rats , Humans , Animals , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods
4.
PLoS One ; 18(12): e0295065, 2023.
Article in English | MEDLINE | ID: mdl-38051722

ABSTRACT

As the number of prohibited drugs has been progressively increasing and analytical methods for detecting such substances are renewed continuously for doping control, the need for more sensitive and accurate doping analysis has increased. To address the urgent need for high throughput and accurate analysis, liquid chromatography with tandem mass spectrometry is actively utilized in case of most of the newly designated prohibited substances. However, because all mass spectrometer vendors provide data processing software that is incapable of handling other instrumental data, it is difficult to cover all doping analysis procedures, from method development to result reporting, on one platform. Skyline is an open-source and vendor-neutral software program invented for the method development and data processing of targeted proteomics. Recently, the utilization of Skyline has been expanding for the quantitative analysis of small molecules and lipids. Herein, we demonstrated Skyline as a simple platform for unifying overall doping control, including the optimization of analytical methods, monitoring of data quality, discovery of suspected doping samples, and validation of analytical methods for detecting newly prohibited substances. For method optimization, we selected the optimal collision energies for 339 prohibited substances. Notably, 195 substances exhibited a signal intensity increase of >110% compared with the signal intensity of the original collision energy. All data related to method validation and quantitative analysis were efficiently visualized, extracted, or calculated using Skyline. Moreover, a comparison of the time consumed and the number of suspicious samples screened in the initial test procedure highlighted the advantages of using Skyline over the commercially available software TraceFinder in doping control.


Subject(s)
Doping in Sports , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Software , Proteomics/methods , Doping in Sports/prevention & control
5.
Drug Test Anal ; 15(11-12): 1439-1448, 2023.
Article in English | MEDLINE | ID: mdl-37667448

ABSTRACT

Due to athletes' misuse of recombinant human growth hormone (rhGH) for performance improvement, the World Anti-Doping Agency has designated rhGH as a prohibited substance. This study focuses on the development and improvement of a simple and fast rhGH detection method using a fluorescence-incorporated antibody sensor "Quenchbody (Q-body)" that activates upon antigen binding. Camelid-derived nanobodies were used to produce stable Q-bodies that withstand high temperatures and pH levels. Notably, pituitary human growth hormone (phGH) comprises two major isoforms, namely 22 and 20 kDa GH, which exist in a specific ratio, and the rhGH variant shares the same sequence as the 22 kDa GH isoform. Therefore, we aimed to discriminate rhGH abuse by analyzing its specific isoform ratio. Two nanobodies, NbPit (recognizing phGH) and NbRec (preferentially recognizing 22 kDa rhGH), were used to develop the Q-bodies. Nanobody production in Escherichia coli involved the utilization of a vector containing 6xHis-tag, and Q-bodies were obtained using a maleimide-thiol reaction between the N-terminal of the cysteine tag and a fluorescent dye. The addition of tryptophan residue through antibody engineering resulted in increased fluorescence intensity (FI) (from 2.58-fold to 3.04-fold). The limit of detection (LOD) was determined using a fluorescence response, with TAMRA-labeled NbRec successfully detecting 6.38 ng/ml of 22 kDa rhGH while unable to detect 20 kDa GH. However, ATTO520-labeled NbPit detected 7.00 ng/ml of 20 kDa GH and 2.20 ng/ml 22 kDa rhGH. Q-bodies successfully detected changes in the GH concentration ratio from 10 to 40 ng/ml in human serum within 10 min without requiring specialized equipment and kits. Overall, these findings have potential applications in the field of anti-doping measures and can contribute to improved monitoring and enforcement of rhGH misuse, ultimately enhancing fairness and integrity in competitive sports.


Subject(s)
Human Growth Hormone , Single-Domain Antibodies , Humans , Growth Hormone , Recombinant Proteins , Protein Isoforms
6.
Toxics ; 11(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37755804

ABSTRACT

Di-(2-Ethylhexyl) phthalate (DEHP) is a prevalent environmental endocrine disruptor that affects homeostasis, reproduction, and developmental processes. The effects of DEHP have been shown to differ based on sex and sexual maturity. This study examines the metabolic profiles of mature adult rats from both sexes, aged 10 weeks, and adolescent female rats, aged 6 weeks, following a single 5 mg/kg of body weight DEHP oral administration. An untargeted metabolomic analysis was conducted on urine samples collected at multiple times to discern potential sex- and maturity-specific DEHP toxicities. Various multivariate statistical analyses were employed to identify the relevant metabolites. The findings revealed disruptions to the steroid hormone and primary bile acid biosynthesis. Notably, DEHP exposure increased hyocholic, muricholic, and ketodeoxycholic acids in male rats. Moreover, DEHP exposure was linked to heart, liver, and kidney damage, as indicated by increased plasma GOT1 levels when compared to the levels before DEHP exposure. This study provides detailed insights into the unique mechanisms triggered by DEHP exposure concerning sex and sexual maturity, emphasizing significant distinctions in lipid metabolic profiles across the different groups. This study results deepens our understanding of the health risks linked to DEHP, informing future risk assessments and policy decisions.

7.
Drug Test Anal ; 15(11-12): 1454-1467, 2023.
Article in English | MEDLINE | ID: mdl-37515313

ABSTRACT

Thymosin ß4 (Tß4) was reported to exert various beneficial bioactivities such as tissue repair, anti-inflammation, and reduced scar formation, and it is listed on the prohibited substances in sports by the World Anti-Doping Agency. However, no metabolism studies of Tß4 were reported yet. Previously, our lab reported in in vitro experiment that a total of 13 metabolites were found by using multiple enzymes, and six metabolites (Ac-Tß31-43 , Ac-Tß17-43 , Ac-Tß1-11 , Ac-Tß1-14 , Ac-Tß1-15 , and Ac-Tß1-17 ) were confirmed by comparing with the synthetic standards. This study was aimed at identifying new metabolites of Tß4 leucine aminopeptidase (LAP), human kidney microsomes (HKM), cultured huvec cells, and rats after administration of Tß4 protein to develop biomarkers for detecting doping drugs in sports. A method for detecting and quantifying Ac-Tß1-14 was developed and validated using Q-Exactive orbitrap mass spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) of the Ac-Tß1-14 were 0.19 and 0.58 ng/mL, respectively, and showed a good linearity (r2 = 0.9998). As a result, among the six metabolites above, Ac-Tß1-14 , as a common metabolite, was found in LAP, HKM, huvec cells exposed to Tß4, and the urine of rats intraperitoneally treated with 20-mg/kg Tß4. And the metabolite Ac-Tß1-14 was quantitatively determined by 48 h in rats, with the highest concentration occurring between 0 and 6 h. Ac-Tß1-14 was not detected in non-treated control groups, including human blank urine. These results suggest that Ac-Tß1-14 in urine is a potential biomarker for screening the parent Tß4 in doping tests.


Subject(s)
Body Fluids , Doping in Sports , Thymosin , Rats , Humans , Animals , Kidney , Thymosin/metabolism , Thymosin/therapeutic use , Body Fluids/metabolism
8.
Talanta ; 258: 124455, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36933297

ABSTRACT

A genetic approach targeted toward improving athletic performance is called gene doping and is prohibited by the World Anti-Doping Agency. Currently, the clustered regularly interspaced short palindromic repeats-associated protein (Cas)-related assays have been utilized to detect genetic deficiencies or mutations. Among the Cas proteins, deadCas9 (dCas9), a nuclease-deficient mutant of Cas9, acts as a DNA binding protein with a target-specific single guide RNA. On the basis of the principles, we developed a dCas9-based high-throughput gene doping analysis for exogenous gene detection. The assay comprises two distinctive dCas9s, a magnetic bead immobilized capture dCas9 for exogenous gene isolation and a biotinylated dCas9 with streptavidin-polyHRP that enables rapid signal amplification. For efficient biotin labeling via maleimide-thiol chemistry, two cysteine residues of dCas9 were structurally validated, and the Cys574 residue was identified as an essential labeling site. As a result, we succeeded in detecting the target gene in a concentration as low as 12.3 fM (7.41 × 105 copies) and up to 10 nM (6.07 × 1011 copies) in a whole blood sample within 1 h with HiGDA. Assuming an exogenous gene transfer scenario, we added a direct blood amplification step to establish a rapid analytical procedure while detecting target genes with high sensitivity. Finally, we detected the exogenous human erythropoietin gene at concentrations as low as 2.5 copies within 90 min in 5 µL of the blood sample. Herein, we propose that HiGDA is a very fast, highly sensitive, and practical detection method for actual doping field in the future.


Subject(s)
CRISPR-Cas Systems , Erythropoietin , Humans , Erythropoietin/genetics
9.
Toxins (Basel) ; 15(3)2023 03 21.
Article in English | MEDLINE | ID: mdl-36977122

ABSTRACT

Ptaquiloside, a naturally occurring cancer-causing substance in bracken fern, has been detected in the meat and milk of cows fed a diet containing bracken fern. A rapid and sensitive method for the quantitative analysis of ptaquiloside in bracken fern, meat, and dairy products was developed using the QuEChERS method and liquid chromatography-tandem mass spectrometry. The method was validated according to the Association of Official Analytical Chemists guidelines and met the criteria. A single matrix-matched calibration method with bracken fern has been proposed, which is a novel strategy that uses one calibration for multiple matrices. The calibration curve ranged from 0.1 to 50 µg/kg and showed good linearity (r2 > 0.99). The limits of detection and quantification were 0.03 and 0.09 µg/kg, respectively. The intraday and interday accuracies were 83.5-98.5%, and the precision was <9.0%. This method was used for the monitoring and exposure assessment of ptaquiloside in all routes of exposure. A total of 0.1 µg/kg of ptaquiloside was detected in free-range beef, and the daily dietary exposure of South Koreans to ptaquiloside was estimated at up to 3.0 × 10-5 µg/kg b.w./day. The significance of this study is to evaluate commercially available products in which ptaquiloside may be present, to monitor consumer safety.


Subject(s)
Pteridium , Sesquiterpenes , Animals , Cattle , Sesquiterpenes/analysis , Milk/chemistry , Meat/analysis
10.
Sci Rep ; 13(1): 3860, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36890204

ABSTRACT

Erythropoietin (EPO) is a glycoprotein hormone that stimulates red blood cell production. It is produced naturally in the body and is used to treat patients with anemia. Recombinant EPO (rEPO) is used illicitly in sports to improve performance by increasing the blood's capacity to carry oxygen. The World Anti-Doping Agency has therefore prohibited the use of rEPO. In this study, we developed a bottom-up mass spectrometric method for profiling the site-specific N-glycosylation of rEPO. We revealed that intact glycopeptides have a site-specific tetra-sialic glycan structure. Using this structure as an exogenous marker, we developed a method for use in doping studies. The profiling of rEPO N-glycopeptides revealed the presence of tri- and tetra-sialylated N-glycopeptides. By selecting a peptide with a tetra-sialic acid structure as the target, its limit of detection (LOD) was estimated to be < 500 pg/mL. Furthermore, we confirmed the detection of the target rEPO glycopeptide using three other rEPO products. We additionally validated the linearity, carryover, selectivity, matrix effect, LOD, and intraday precision of this method. To the best of our knowledge, this is the first report of a doping analysis using liquid chromatography/mass spectrometry-based detection of the rEPO glycopeptide with a tetra-sialic acid structure in human urine samples.


Subject(s)
Erythropoietin , Glycopeptides , Humans , Glycopeptides/chemistry , N-Acetylneuraminic Acid , Erythropoietin/chemistry , Recombinant Proteins , Mass Spectrometry
11.
Environ Res ; 221: 115305, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36642120

ABSTRACT

Phenols are significant environmental endocrine disruptors that can have adverse health effects on exposed individuals. Correlating phenol exposure to potential health implications requires the development of a comprehensive and sensitive analytical method capable of analyzing multiple phenols in a single sample preparation and analytical run. Currently, no such method is available for multiple classes of phenols due to electrospray ionization (ESI) limitations in concurrent ionization and lack of sensitivity to certain phenols, particularly alkylphenols. In this study, we investigated the influence of mobile phase compositions in ESI on concurrent ionization and analytical sensitivity of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) during the analysis of multiple classes of phenols, and we propose a comprehensive and sensitive analytical method for various classes of phenols (i.e., bisphenols, parabens, benzophenones, chlorophenols, and alkylphenols). The proposed method was affected by 0.5 mM ammonium fluoride under methanol conditions. It enabled the concurrent ionization of all the phenols and significantly improved the analytical sensitivity for bisphenols and alkylphenols, which typically have poor ionization efficiency. This method, combined with a "dilute and shoot" approach, allowed us to simultaneously quantify 38 phenols with good chromatographic behavior and sensitivity. Furthermore, the method was successfully applied to the analysis of 61 urine samples collected from aquatic (swimming) and land (indoor volleyball and outdoor football) athletes.


Subject(s)
Chlorophenols , Humans , Tandem Mass Spectrometry/methods , Parabens/analysis , Benzophenones/analysis , Chromatography, Liquid/methods , Phenols/urine , Spectrometry, Mass, Electrospray Ionization/methods
12.
Drug Test Anal ; 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36610033

ABSTRACT

One of the single nucleotide polymorphisms (SNPs) in human erythropoietin (hEPO), the c.577del variant, can produces 26 amino acids longer than the wild-type hEPO, posing a risk of misinterpretation in routine doping analysis. To prevent this, the World Anti-Doping Agency (WADA) included a procedure for reporting the sequencing results regarding the presence or absence of SNPs for suspected cases in the new version of the technical document for recombinant EPO in 2022. However, it is very expensive for anti-doping laboratories to purchase a gene sequencing analyzer, which costs hundreds of thousands of dollars, and only a few companies provide specific gene sequencing services with accredited certification. Therefore, in this study, we developed a simple visualization method for the c.577del of the EPO variant at the gene level. The gene fragment of the EPO gene, including c.577del, was amplified using a fast polymerase chain reaction (PCR), and the PCR products were incubated with the clustered regularly interspaced short palindromic repeats (CRISPR)/deadCas9 system using variant-specific single-guide RNA (sgRNA). This ribonucleoprotein complex binds specifically to the EPO variant gene fragment, causing a band shift on native-PAGE. We designed 4 sgRNAs that can bind only to the EPO variant or wild-type gene. In addition, an electrophoretic mobility shift assay on a gel demonstrated that one of the sgRNAs had a high level of specificity. Consequently, the c.577del variant was selectively detected by visualizing the target fragment of the gene on the gel within 3 h using only 3 µl of the whole blood.

13.
Drug Test Anal ; 15(11-12): 1329-1343, 2023.
Article in English | MEDLINE | ID: mdl-36700373

ABSTRACT

Bolasterone (7α,17α-dimethyltestosterone) and anabolic androgenic steroids are included in the World Anti-Doping Agency's Prohibited list of substances. This study aimed to evaluate the metabolism of bolasterone through in vitro experiments using rat liver microsomes and in vivo experiments using rat urine after oral administration. Urine samples were collected over a 168-h period. Bolasterone and its metabolites were detected by liquid chromatography coupled with a Q-Exactive Obitrap mass spectrometry (LC-HRMS). Ultimately 16 hydroxylated metabolites (M1-M16), one metabolite from the reduction of the 3-keto function and 4-ene (M17), and one glucuronic acid conjugated metabolite (M18) were detected. Metabolites M17 and M18 were confirmed by comparison with available reference or authentic standards. Metabolic modifications in the structure of the parent bolasterone result in different fragmentation patterns. Based on the sensitivity of the HRMS data, characteristic ions such as m/z 121.064 (C8 H9 O) generated from ring A of the mono-hydroxylated metabolites and 121.101 (C9 H13 ) generated from ring D of the di-hydroxylated metabolites were observed that helped differentiate between the obtained metabolites. The structures of fragment ions were tentatively proposed based on their fragmentation pathways, where the significant ions were correlated to the possible structural fragments. In conclusion, new metabolites of bolasterone were detected and characterized by the use of the full-scan and dd-MS/MS using LC-HRMS, and this data can be useful for providing metabolite information for the interpretation of mass spectra of anabolic bolasterone analogues for doping screening tests.


Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Animals , Rats , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Chromatography, Liquid/methods , Microsomes, Liver/metabolism , Ions , Anabolic Agents/analysis
14.
Drug Test Anal ; 15(3): 292-298, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36346023

ABSTRACT

Blood transfusion is performed by cheating athletes to rapidly increase oxygen delivery to exercise muscles and enhance their performance. This method is banned by the World Anti-doping Agency (WADA). Heterologous or allogenic blood transfusion happens when blood from a different person is transfused. The method used to detect this type of doping is based on flow cytometry, by identifying variations in blood group minor antigens present on the red blood cells' surface. Transfusion practices have regained interest since the introduction of human recombinant erythropoietin detection method. It has been reported that the number of occurrences of two athletes sharing an identical phenotype in the same sport was five times higher than the theoretical populational probability. The present work describes the prevalence of 10 erythrocytes surface antigens in a population of 261 athletes from all five continents. The matching phenotype per sport is also described.


Subject(s)
Doping in Sports , Sports , Humans , Blood Transfusion , Erythrocytes , Athletes
15.
Drug Test Anal ; 13(4): 871-875, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33201595

ABSTRACT

The increased potential for gene doping since the introduction of gene therapy presents the need to develop antidoping assays. We therefore aimed to develop a quick and simple method for the detection of specifically targeted exogenous doping genes utilizing an in vitro clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) system. A human erythropoietin (hEPO) is a drug frequently used for doping in athletes, and gene doping using gene transfer techniques may be attempted. Therefore, we selected hEPO gene as a model of exogenous doping gene, and complemental single guide RNA (sgRNA) was designed to specifically bind to the four exon-exon junctions in the hEPO cDNA. For the rapid reaction of CRISPR-Cas9, further optimization was performed using an open-source program (CRISPOR) that avoids TT and GCC motifs before the protospacer adjacent motif (PAM) domain and predicts the efficiency of the sgRNA. We optimized the in vitro Cas9 assay and dual use of sgRNA for double cleavage and identified the limit of detection (LOD) of the 1.25 nM of the double cleavage method. We expect that the improved CRISPR-Cas9 method can be used for antidoping analysis of gene doping.


Subject(s)
CRISPR-Cas Systems/genetics , Doping in Sports/prevention & control , Erythropoietin/genetics , DNA, Complementary/genetics , Humans , In Vitro Techniques , Limit of Detection , RNA, Guide, Kinetoplastida/genetics
16.
Article in English | MEDLINE | ID: mdl-32949925

ABSTRACT

Monosaccharide composition of biological samples can reflect an individual's health status. Monitoring the concentration of individual monosaccharides in human serum requires a technique for the simultaneous analysis of multiple monosaccharide molecules. Furthermore, certified reference materials (CRMs) for overall monosaccharide composition of human serum are required in order to validate the performance of clinical laboratory instruments. In the present study, we present a novel method for the simultaneous analysis of numerous monosaccharide molecules without the need for derivatization or post-column treatment. We utilized ultra-high-performance liquid chromatography (UHPLC)-quadrupole/orbitrap mass spectrometry incorporating a hydrophilic interaction chromatography (HILIC) column. We optimized the precursor ions, product ions, mobile phase composition and gradient program, flow rate, and column temperature. Seven monosaccharides (D-Ribose, L-Arabinose, D-Xylose, D-Fructose, D-Mannose, D-Galactose and D-Glucose) were able to be separated and quantified. We validated the method and the seven molecules showed favorable limits of detection and quantification, recovery rates, carry-over effects, intra- and inter-day accuracy and precision, resolution, and measurement uncertainty. We analyzed human serum samples using the method. To avoid ion suppression and D-d2-Glucose peak interference, compounds present at concentrations outside of the calibration range were analyzed from diluted samples. Quantification of serum samples corroborated some previous clinical research, in that increased D-Glucose concentration was associated with increased concentrations of D-Mannose and D-Ribose. We also validated the CRMs, and expect these to have utility as standards for serum monosaccharide profiling, thus contributing to public health.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Monosaccharides/blood , Adult , Child , Chromatography, High Pressure Liquid/standards , Humans , Limit of Detection , Linear Models , Male , Mass Spectrometry/standards , Reference Standards , Reproducibility of Results
17.
Biochem Biophys Res Commun ; 528(1): 85-91, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32451086

ABSTRACT

Pseudomonas aeruginosa is a widely found opportunistic pathogen. The emergence of multidrug-resistant strains and persistent chronic infections have increased. The protein encoded by the pa0423 gene in P. aeruginosa is proposed to be critical for pathogenesis and could be a virulence-promoting protease or a bacterial lipocalin that binds a lipid-like antibiotic for drug resistance. Although two functions of proteolysis and antibiotic resistance are mutually related to bacterial survival in the host, it is very unusual for a single-domain protein to target unrelated ligand molecules such as protein substrates and lipid-like antibiotics. To clearly address the biological role of the PA0423 protein, we performed structural and biochemical studies. We found that PA0423 adopts a single-domain ß-barrel structure and belongs to the lipocalin family. The PA0423 structure houses an internal tubular cavity, which accommodates a ubiquinone-8 molecule. Furthermore, we reveal that PA0423 can directly interact with the polymyxin B antibiotic using the internal cavity, suggesting that PA0423 has a physiological function in the antibiotic resistance of P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Ligands , Lipocalins/chemistry , Models, Molecular , Polymyxin B/chemistry , Polymyxin B/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Structural Homology, Protein , Ubiquinone/chemistry , Ubiquinone/metabolism
18.
Drug Test Anal ; 11(8): 1231-1237, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30950199

ABSTRACT

The erythrocyte membrane is composed of a phospholipid bilayer, which is known to undergo physicochemical changes during storage at low temperatures. This study was conducted to identify marker phospholipids that indicate alteration during deep-frozen storage and to determine the amount of marker phospholipids. Our research suggested a method to detect phospholipids by profiling analysis of thermally injured red blood cells (RBCs) without protecting agents. Human blood was stored at -80°C for 72 days. The RBC membrane phospholipids were extracted through a modified Bligh and Dyer method. Six selected phospholipids were analyzed and quantified using liquid chromatography-tandem mass spectrometry, and an in vitro model system was developed. The intracellular level of N-nervonoyl-D-erythro-sphingosylphosphorylcholine significantly increased in the thermally injured RBCs, and multiple biomarker candidates were evaluated by profiling analysis and mass spectrometry technology for targeted metabolomics.


Subject(s)
Blood Preservation/methods , Cryopreservation/methods , Erythrocytes/chemistry , Phospholipids/analysis , Erythrocyte Membrane/chemistry , Erythrocytes/cytology , Humans , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/analysis , Sphingosine/analogs & derivatives , Sphingosine/analysis
19.
Cell Death Differ ; 26(2): 213-228, 2019 01.
Article in English | MEDLINE | ID: mdl-29786072

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and the reduction of dopamine levels in the striatum. Although details of the molecular mechanisms underlying dopaminergic neuronal death in PD remain unclear, neuroinflammation is also considered a potent mediator in the pathogenesis and progression of PD. In the present study, we present evidences that microglial NLRP3 inflammasome activation is critical for dopaminergic neuronal loss and the subsequent motor deficits in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Specifically, NLRP3 deficiency significantly reduces motor dysfunctions and dopaminergic neurodegeneration of MPTP-treated mice. Furthermore, NLRP3 deficiency abolishes MPTP-induced microglial recruitment, interleukin-1ß production and caspase-1 activation in the SN of mouse brain. In primary microglia and mixed glial cell cultures, MPTP/ATP treatment promotes the robust assembly and activation of the NLRP3 inflammasome via producing mitochondrial reactive oxygen species. Consistently, 1-methyl-4-phenyl-pyridinium (MPP+) induces NLRP3 inflammasome activation in the presence of ATP or nigericin treatment in mouse bone-marrow-derived macrophages. These findings reveal a novel priming role of neurotoxin MPTP or MPP+ for NLRP3 activation. Subsequently, NLRP3 inflammasome-active microglia induces profound neuronal death in a microglia-neuron co-culture model. Furthermore, Cx3Cr1CreER-based microglia-specific expression of an active NLRP3 mutant greatly exacerbates motor deficits and dopaminergic neuronal loss of MPTP-treated mice. Taken together, our results indicate that microglial NLRP3 inflammasome activation plays a pivotal role in the MPTP-induced neurodegeneration in PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cell Death , Dopaminergic Neurons/metabolism , Inflammasomes/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurotoxins/pharmacology , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Dopamine/metabolism , Gene Knockout Techniques , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Parkinson Disease/metabolism
20.
Drug Test Anal ; 11(3): 382-391, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30188018

ABSTRACT

Target analysis using liquid chromatography-tandem mass spectrometry is applied for rapidly detecting various prohibited doping substances. Frequent modification is required as additional substances are prohibited. We developed and validated a non-target screening method requiring no further modification because it analyzes the full spectrum of data in fixed m/z ranges. Urine samples were extracted using solid-phase extraction and analyzed by employing a method that combines full scan and variable data independent acquisition using high-resolution mass spectrometry; and all prohibited substances in the urine samples were successfully detected using our screening method. The method was validated in terms of specificity (no interferences), recoveries (29%-131%), matrix effects (35%-237%), limites of detection (0.0002-100 ng/mL), and intra- and inter-day precisions (coefficients of variation lower than 25%). The applicability of this method to doping tests was evaluated by analyzing 14 urine samples. As a result, the non-target screening method is efficient for conducting anti-doping tests because it can be applied without any further modification to prohibited drugs as well as to unknown targets that can be prohibited in the future.


Subject(s)
Chromatography, Liquid/methods , Illicit Drugs/urine , Substance Abuse Detection/methods , Tandem Mass Spectrometry/methods , Humans , Limit of Detection , Sensitivity and Specificity , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...