Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 6(14): 12603-24, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26059439

ABSTRACT

Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.


Subject(s)
Antioxidants/pharmacology , Epstein-Barr Virus Infections/prevention & control , Quercetin/pharmacology , Stomach Neoplasms/virology , Virus Latency/drug effects , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Humans , Reverse Transcriptase Polymerase Chain Reaction
2.
J Microbiol ; 53(2): 155-65, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25626372

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that causes acute infection and establishes life-long latency. EBV causes several human cancers, including Burkitt's lymphoma, nasopharyngeal and gastric carcinoma. Antiviral agents can be categorized as virucides, antiviral chemotherapeutic agents, and immunomodulators. Most antiviral agents affect actively replicating viruses, but not their latent forms. Novel antiviral agents must be active on both the replicating and the latent forms of the virus. Gardenia jasminoides is an evergreen flowering plant belonging to the Rubiaceae family and is most commonly found growing wild in Vietnam, Southern China, Taiwan, Japan, Myanmar, and India. Genipin is an aglycone derived from an iridoid glycoside called geniposide, which is present in large quantities in the fruit of G. jasminoides. In this study, genipin was evaluated for its role as an antitumor and antiviral agent that produces inhibitory effects against EBV and EBV associated gastric carcinoma (EBVaGC). In SNU719 cells, one of EBVaGCs, genipin caused significant cytotoxicity (70 µM), induced methylation on EBV C promoter and tumor suppressor gene BCL7A, arrested cell-cycle progress (S phases), upregulated EBV latent/lytic genes in a dose-dependent manner, stimulated EBV progeny production, activated EBV F promoter for EBV lytic activation, and suppressed EBV infection. These results indicated that genipin could be a promising candidate for antiviral and antitumor agents against EBV and EBVaGC.


Subject(s)
Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Herpesvirus 4, Human/drug effects , Iridoids/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/virology , Antiviral Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , DNA Methylation/drug effects , Gene Expression Regulation, Viral/drug effects , HEK293 Cells , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Humans , Iridoids/therapeutic use , Microfilament Proteins , Oncogene Proteins , Promoter Regions, Genetic/drug effects , S Phase/drug effects , Viral Proteins/genetics , Virus Latency/drug effects , Virus Replication/drug effects
3.
Oncoscience ; 1(12): 866-881, 2014.
Article in English | MEDLINE | ID: mdl-25621301

ABSTRACT

Cordyceps species are known to produce numerous active components and are used for diverse medicinal purposes because of their varied physiological activities, including their ability to protect the liver from damage as well as their anticancer, antidepressant, anti-inflammatory, hypoglycemic, antimicrobial effects. Cordycepin, an adenosine derivative, differs from adenosine in that its ribose lacks an oxygen atom at the 3' position. Several research groups have reported that cordycepin has antiviral activity against several viruses including influenza virus, plant viruses, human immunodeficiency virus(HIV), murine leukemia virus, and Epstein-Barr virus (EBV). In this study, we identify the epigenetic mechanisms by which cordycepin exerts its anti-gammaherpesvirus effects. We show that cordycepin possesses antitumor and antiviral activity against gastric carcinoma and EBV, respectively. A comparison of the CD50 values of cordycepin and its analogs showed that the lack of a 2'-hydroxyl group in cordycepin was critical for its relatively potent cytotoxicity. Cordycepin treatment decreased the rate of early apoptosis in SNU719 cells by up to 64%, but increased late apoptosis/necrosis by up to 31%. Interestingly, cordycepin increased BCL7A methylation in SNU719 cells by up to 58% and decreased demethylation by up to 37%. Consistent with these changes in methylation, cordycepin treatment significantly downregulated most EBV genes tested. Under the same conditions, cordycepin significantly decreased the frequency of Q and F promoter usage, and H3K4me3 histone enrichment was significantly reduced at several important EBV genomic loci. Extracellular and intracellular EBV genome copy numbers were reduced by up to 55% and 30%, respectively, in response to 125 µM cordycepin treatment. Finally, cordycepin significantly suppressed the transfer of EBV from LCL-EBV-GFP to AGS cells, indicating that EBV infection of gastric epithelial cells was inhibited. These results suggest that cordycepin has antiviral and antitumor activities against gammaherpesviruses and host cells latently infected with virus.

4.
J Microbiol ; 51(5): 545-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24173639

ABSTRACT

More than 90% of adults have been infected with at least one human herpesvirus, which establish long-term latent infection for the life of the host. While anti-viral drugs exist that limit herpesvirus replication, many of these are ineffective against latent infection. Moreover, drug-resistant strains of herpesvirus emerge following chemotherapeutic treatment. For example, resistance to acyclovir and related nucleoside analogues can occur when mutations arise in either HSV thymidine kinase or DNA polymerases. Thus, there exists an unmet medical need to develop new anti-herpesvirus agents with different mechanisms of action. In this Review, we discuss the promise of anti-herpetic substances derived from natural products including extracts and pure compounds from potential herbal medicines. One example is Glycyrrhizic acid isolated from licorice that shows promising antiviral activity towards human gammaherpesviruses. Secondly, we discuss anti-herpetic mechanisms utilized by several natural products in molecular level. While nucleoside analogues inhibit replicating herpesviruses in lytic replication, some natural products can disrupt the herpesvirus latent infection in the host cell. In addition, natural products can stimulate immune responses against herpesviral infection. These findings suggest that natural products could be one of the best choices for development of new treatments for latent herpesvirus infection, and may provide synergistic anti-viral activity when supplemented with nucleoside analogues. Therefore, it is important to identify which natural products are more efficacious anti-herpetic agents, and to understand the molecular mechanism in detail for further advance in the anti-viral therapies.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Herpesviridae/drug effects , Plants, Medicinal/chemistry , Antiviral Agents/isolation & purification , Biological Products/isolation & purification , Herpesviridae/immunology , Herpesviridae/physiology , Herpesviridae Infections/drug therapy , Humans , Immunologic Factors/isolation & purification , Immunologic Factors/pharmacology , Virus Latency/drug effects , Virus Replication/drug effects
5.
J Microbiol ; 51(4): 490-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23990301

ABSTRACT

Carthamus tinctorius L. (CT) is traditionally used to reduce ailments from diseases of the musculoskeletal system and connective tissue and diseases of blood circulation and the cardiovascular system. Flower extracts from CT are known to have antibacterial activity, anti-inflammatory activity, and to inhibit tumor promotion in mouse skin carcinogenesis. In order to discover new antiviral agents from CT extracts, we tested whether CT extracts contain antiviral activity against gammaherpesvirus infection. This study demonstrated that treatment with CT extracts disrupted KSHV latency in the viral-infected host cells, iSLK-BAC16. n-Hexane and EtOH fractions of CT extracts critically affected at least two stages of the KHSV life-cycle by abnormally inducing KSHV lytic reactivation and by severely preventing KSHV virion release from the viral host cells. In addition to the effects on KSHV itself, CT extract treatments induced cellular modifications by dysregulating cell-cycle and producing strong cytotoxicity. This study demonstrated for the first time that CT extracts have antiviral activities that could be applied to development of new anti-gammaherpesviral agents.


Subject(s)
Antiviral Agents/pharmacology , Carthamus tinctorius/chemistry , Herpesvirus 8, Human/drug effects , Herpesvirus 8, Human/physiology , Plant Extracts/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/toxicity , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Chlorocebus aethiops , Gene Expression Regulation, Viral/drug effects , Humans , Plant Extracts/toxicity , Transcription, Genetic , Vero Cells , Virus Activation/drug effects , Virus Latency/drug effects , Virus Release/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...