Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 196: 115569, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922593

ABSTRACT

Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic­nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.


Subject(s)
Ecosystem , Seawater , Pacific Ocean , Methane , Nitrogen
2.
Environ Int ; 178: 108083, 2023 08.
Article in English | MEDLINE | ID: mdl-37429057

ABSTRACT

The structure of 9-year time series data for Sea Surface Temperature (SST), Chlorophyll a (Chl-a) and Total Suspended Solids (TSS), derived from the Visible Infrared Imaging Radiometer Suite (VIIRS), was examined in this study. Authors found that there exists strong seasonality among the three variables with spatial heterogeneity along the Korean South Coast (KSC). In specific, SST was in phase with Chl-a, but out of phase with TSS by six months. A strong inversed spectral power with six-month phase-lag was found between Chl-a and TSS. This could be attributed to different dynamics and environmental settings. For example, Chl-a concentration seemed to have strong positive correlation with SST indicating typical seasonality of marine biogeochemical processes such as primary production; while a strong negative correlation between TSS and SST might have been influenced by changes in physical oceanographic processes, such as stratification and monsoonal wind-driven vertical mixing. In addition, the strong east-west heterogeneity of Chl-a suggests that the marine coastal environments are predominantly governed by distinct local hydrological conditions and human activities associated with land cover and land use, while the east-west spatial pattern revealed in TSS timeseries was associated with the gradient of tidal forcings and topographical changes keeping tidally induced resuspension low eastward.


Subject(s)
Chlorophyll , Quality Indicators, Health Care , Humans , Chlorophyll A , Chlorophyll/analysis , Water Quality , Seasons , Republic of Korea , Environmental Monitoring/methods
3.
Mar Pollut Bull ; 174: 113175, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34844148

ABSTRACT

The Yellow Sea, characterized as a high-productivity ecosystem, is considered to be significantly attributable to high nutrient supply via atmospheric deposition. We observed a significant decline in phytoplankton biomass (~30%) over the Yellow Sea during February-May 2020 (period of COVID-19 lockdown effect) compared to the same period in 2015-2019 (period of no effect of COVID-19 lockdown). Several possible factors, such as variations in irradiance, vertical mixing, and river discharges, were not major contributors. Through the analysis of transportation and the constituents of atmospheric pollutants from Northern China (main source regions) to the Yellow Sea, we suggest that the decline in phytoplankton biomass over the Yellow Sea is mainly attributed to decreased atmospheric nutrient deposition due to the COVID-19 lockdown effect, because of decreased anthropogenic emissions in Northern China. Thus, attention should be focused on the Yellow Sea ecosystem response to increasing anthropogenic activities by lifting the COVID-19 lockdown restrictions.


Subject(s)
COVID-19 , Phytoplankton , Anthropogenic Effects , Biomass , China , Communicable Disease Control , Ecosystem , Humans , SARS-CoV-2
4.
Plant Signal Behav ; 16(9): 1926130, 2021 09 02.
Article in English | MEDLINE | ID: mdl-33980131

ABSTRACT

The increased level of endogenous abscisic acid (ABA) in brassinosteroid (BR)-deficient mutants, such as det2 and cyp85a1 × cyp85a2, suggests that ABA synthesis is inhibited by endogenous BRs in Arabidopsis thaliana. Expression of the ABA biosynthesis gene ABA-deficient 2 (ABA2) was negatively regulated by exogenously applied BR but up-regulated by the application of brassinazole and in det2 and cyp85a1 × cyp85a2. In addition, ABA2 expression decreased in bzr1-1D, showing that ABA biosynthesis is inhibited by BR signaling via BZR1, intermediated by ABA2, in Arabidopsis. Four cis-element sequences (E-boxes 1-4) in the putative promoter region of ABA2 were identified as BZR1 binding sites. The electrophoretic mobility shift assay and chromatin immune precipitation analysis demonstrated that BZR1 directly binds to overlapped E-boxes (E-box 3/4) in the promoter region of ABA2. The level of endogenous ABA was decreased in bzr1-1D compared to wild-type, indicating that binding of BZR1 to the ABA2 promoter inhibits ABA synthesis in Arabidopsis. Compared to wild-type, aba2-1 exhibited severely reduced growth and development. The abnormalities in aba2-1 were rescued by the application of ABA, suggesting that ABA2 expression and ABA synthesis are necessary for the normal growth and development of A. thaliana. Finally, bzr1-KO × aba2-1 exhibited inhibitory growth of primary roots compared to bzr1-KO, verifying that ABA2 is a downstream target of BZR1 in the plant. Taken together, the level of endogenous ABA is down-regulated by BR signaling via BZR1, controlling the growth of A. thaliana.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Brassinosteroids/metabolism , Down-Regulation/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mutation
5.
Int J Occup Saf Ergon ; 27(2): 488-496, 2021 Jun.
Article in English | MEDLINE | ID: mdl-30966995

ABSTRACT

Purpose. The aim of this article was to measure the safety perception level of workers on a South Korean construction site and investigate safety problems using the Nordic occupational safety climate questionnaire (NOSACQ-50). Methods. The survey was carried out via the NOSACQ-50 with 175 workers from five South Korean construction companies to evaluate their perception level. The results were then compared with the NOSACQ-50 criteria. Results. The safety perception of this South Korean construction site is high when compared with the NOSACQ-50 criteria. This high level was especially pronounced for the seventh dimension of the efficacy of the safety system, which showed the highest level among all dimensions. In addition, we suggested improvements and interventions to sustain a safety climate amongst workgroups. Conclusions. This study confirms that the seventh dimension showed the highest safety perception amongst all dimensions in South Korea. In the future, these findings can be utilized to develop an evaluation tool for the safety climate of the construction industry in South Korea.


Subject(s)
Construction Industry , Occupational Health , Humans , Organizational Culture , Perception , Republic of Korea , Safety Management , Surveys and Questionnaires , Workplace
6.
Int J Occup Saf Ergon ; 27(2): 589-596, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32156197

ABSTRACT

Purpose. The purpose of this study is to analyze the correlation between safety climate and productivity for actual construction projects. The safety climate of the case projects was analyzed using the Nordic occupational safety climate questionnaire for the participants of the projects, and the resources used for the main work were used to analyze productivity. Methods. Many researchers have concluded that if the safety climate in a construction business improves, the rate of human accidents decreases. A decrease in accidents or injuries means that the quality of labor is improved; productivity can be expected to increase as a result. However, some site engineers argue that there is a dilemma since management costs increase when the safety climate is improved. If quantitative analysis of the correlation between safety climate and construction productivity can be performed, the results may show that additional costs to improve the safety climate are offset by productivity gains. Conclusions. As a result of regression analysis, we concluded that there is a significant relationship between safety climate and productivity. In the future, our findings can be used as a reference for developing a construction productivity prediction model as influenced by the safety climate.


Subject(s)
Construction Industry , Occupational Health , Accidents, Occupational/prevention & control , Efficiency , Humans , Organizational Culture , Republic of Korea , Safety Management
7.
Opt Express ; 28(3): 2661-2682, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121950

ABSTRACT

A methodology is developed for deriving consistent ocean biological and biogeochemical products from multiple satellite ocean color sensors that have slightly different sensor spectral characteristics. Specifically, the required coefficients for algorithm modifications are obtained using the hyperspectral in situ optical measurements from the Marine Optical Buoy (MOBY) in the water off Hawaii. It is demonstrated that using the proposed approach for modifying ocean biological and biogeochemical algorithms, satellite-derived ocean property data over the global open ocean are consistent from multiple satellite sensors, although their corresponding sensor-measured normalized water-leaving radiance spectra nLw(λ) are different. Therefore, the proposed approach allows satellite-derived ocean biological and biogeochemical products to be consistent and can therefore be routinely merged from various satellite ocean color sensors. The proposed approach can be applied to any satellite algorithms that use the input of sensor-measured nLw(λ) spectra.


Subject(s)
Environmental Monitoring/instrumentation , Oceans and Seas , Satellite Communications , Algorithms , Chlorophyll A/analysis , Color , Optics and Photonics
8.
Plant Signal Behav ; 15(4): 1734333, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32114884

ABSTRACT

ProACO4-GUS expression and RT-PCR analysis revealed that ACO4 is predominantly expressed in shoots of Arabidopsis seedlings under light conditions. ACO4-overexpressed mutant 35S-ACO4 produced more ethylene relative to the wild-type, which resulted in reduced growth of Arabidopsis seedlings. The abnormal growth of seedlings recurred after the application of Co2+ ions, suggesting that ACO4 is a functional ACO necessary to regulate the growth and development of Arabidopsis seedlings. Exogenously-applied brassinosteroids (BRs) inhibited the expression of ACO4, and an enhanced ACO4 expression was found in det2, a BR-deficient mutant. Additionally, expression of ACO4 was decreased in bzr1-D (a BZR1-dominant mutant), implying that BR signaling negatively regulates ACO4 expression via BZR1 in Arabidopsis. In the intergenic region of ACO4, four E-boxes and a BR regulatory element (BRRE) are found. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that BZR1 binds directly to the BRRE in the putative promoter region of ACO4. By binding of BZR1 to BRRE, less ethylene was produced, which seems to regulate the growth and development of Arabidopsis seedlings.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Brassinosteroids/metabolism , DNA-Binding Proteins/metabolism , Down-Regulation , Lyases/genetics , Lyases/metabolism , Seedlings/enzymology , Signal Transduction , Arabidopsis/drug effects , Arabidopsis/metabolism , Brassinosteroids/pharmacology , Down-Regulation/drug effects , Down-Regulation/genetics , Gene Expression Regulation, Plant/drug effects , Seedlings/genetics , Seedlings/growth & development
9.
Environ Int ; 134: 105301, 2020 01.
Article in English | MEDLINE | ID: mdl-31743805

ABSTRACT

Dissolved oxygen (DO) is one of the critical parameters representing water quality in coastal environments. However, it is labor- and cost-intensive to maintain monitoring systems of DO since in situ measurements of DO are needed in high spatial and temporal resolution to establish proper management plans of coastal regions. In this study, we applied statistical analyses between long-term monitoring datasets and satellite remote sensing datasets in the eastern coastal region of the Yellow Sea. Pearson correlation analysis of long-term water quality monitoring datasets shows that water temperature and DO are highly correlated. Stepwise multiple regression analysis among DO and satellite-derived environmental variables shows that the in situ DO can be estimated by the combination of the present sea surface temperature (SST), the chlorophyll-a, and the SST in the month prior. The high skill score of our proposed model to derive DO is validated by two error measures, the Absolute Relative Error, 1-ARE (89.2%), and Index of Agreement, IOA (78.6%). By applying the developed model to the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) products, spatial and temporal changes in satellite-derived DO can be observed in Saemangeum offshore in the Yellow Sea. The analysis results show that there is a significant decrease in estimated DO between summer of 2003 versus 2012 indicating summer coastal deoxygenation due probably to the Saemangeum reclamation. This study shows the potential capability of satellite remote sensing in monitoring in situ DO in both high temporal and spatial resolution, which will be beneficial for effective and efficient management of coastal environments.


Subject(s)
Oxygen/analysis , Remote Sensing Technology , Satellite Imagery , Seawater/analysis , Water Quality , Environmental Monitoring , Republic of Korea
10.
Mol Cells ; 41(10): 923-932, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30352493

ABSTRACT

Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.


Subject(s)
Arabidopsis/genetics , Ethylenes/biosynthesis , Ethylenes/metabolism , Plant Roots/genetics
11.
J Exp Bot ; 69(16): 4065-4082, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29788353

ABSTRACT

To gain insights into the molecular mechanisms underlying hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat, the present study investigated transcriptional regulation of genes related to hormone metabolism and transport in the root and stem node tissues. Waterlogging-induced inhibition of axile root elongation and lateral root formation, and promotion of surface adventitious and axile root emergence and aerenchyma formation are associated with enhanced expression levels of ethylene biosynthesis genes, ACS7 and ACO2, in both tissues. Inhibition of axile root elongation is also related to increased root indole acetic acid (IAA) and jasmonate (JA) levels that are associated with up-regulation of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9) and JA metabolism (LOX8, AOS1, AOC1, and JAR1) genes, and transcriptional alteration of gibberellin (GA) metabolism genes (GA3ox2 and GA2ox8). Adventitious root emergence from waterlogged stem nodes is associated with increased levels of IAA and GA but decreased levels of cytokinin and abscisic acid (ABA), which are regulated through the expression of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9), cytokinin metabolism (IPT5-2, LOG1, CKX5, and ZOG2), ABA biosynthesis (NCED1 and NCED2), and GA metabolism (GA3ox2 and GA2ox8) genes. These results enhance our understanding of the molecular mechanisms underlying the adaptive response of wheat to waterlogging.


Subject(s)
Plant Growth Regulators/physiology , Plant Roots/physiology , Triticum/physiology , Abscisic Acid/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Stems/metabolism , Plant Stems/physiology , Triticum/metabolism
12.
Environ Pollut ; 241: 115-123, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29803025

ABSTRACT

This study presents the results of field experiments that were designed to investigate the photophysiological characteristics of microphytobenthos (MPB) and to estimate primary production (PP) in Daebu mudflat, which is located at the west coast of Korea. A typical seasonal (or monthly) fluctuation of intertidal MPB PP was found in association with biotic (benthic Chl-a) and/or abiotic parameters (irradiance and temperature) over a period of three years. From a series of field-laboratory experiments using the oxygen micro-profiling method (totaling 28 surveys), three consistent phenomena were observed: 1) winter to early spring algal blooms, 2) seasonal changes in Q10, and 3) temperature dependent MPB photosynthesis-irradiance (P-I). In particular, both the chlorophyll-specific maximum photosynthetic capacity (Pbmax) and the saturated light intensity (Ik), derived from 126 P-I curves (1870 data sets of oxygen micro-profiling in the sediment), were significantly correlated with sediment temperature (p < 0.01). To develop an empirical MPB PP model, the relationships between P-I parameters and environmental variables were parameterized following established exponential forms (e.g., Q10). It was possible to estimate the MPB PP in Daebu mudflat area by using easily accessible explanatory factor, suitable to be used for future explorations of parameters such as sediment temperature, irradiance, chlorophyll concentration, and tidal height. The estimated annual MPB PP based on the empirical PP model were found to be greater than that in the Wadden Sea and average annual PP in the temperate zones of the world. Authors believe that the present approach of the MPB PP estimation could be combined with remote-sensing techniques (e.g., satellites) to support coastal ecosystem management.


Subject(s)
Ecosystem , Photosynthesis , Temperature , Algorithms , Chlorophyll/metabolism , Chlorophyll/physiology , Conservation of Natural Resources , Republic of Korea , Seasons , Water Movements
13.
ScientificWorldJournal ; 2018: 6218430, 2018.
Article in English | MEDLINE | ID: mdl-29686587

ABSTRACT

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Subject(s)
Genes, Plant , Phenols/metabolism , Sophora/genetics , Sophora/metabolism , Biosynthetic Pathways/genetics , Chromatography, High Pressure Liquid , Gene Expression Profiling , Gene Expression Regulation, Plant , Organ Specificity/genetics , Phenols/chemistry , Phytochemicals/chemistry , Plant Extracts , Sophora/chemistry , Transcriptome
14.
J Exp Bot ; 69(8): 1873-1886, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29432595

ABSTRACT

DWARF1 (DWF1) is a sterol C-24 reductase that catalyses the conversion of 24-methylenecholesterol (24-MCHR) to campesterol (CR) in Arabidopsis. A loss-of-function mutant, dwf1, showed similar phenotypic abnormalities to brassinosteroid (BR)-deficient mutants. These abnormalities were reversed in the wild-type phenotype by exogenous application of castasterone (CS) and brassinolide (BL), but not dolichosterone (DS). Accumulation of DS and decreased CS were found in quantitative analysis of endogenous BRs in dwf1. The enzyme solution prepared from dwf1 was unable to convert 6-deoxoDS to 6-deoxoCS and DS to CS, as seen in either wild-type or 35S:DWF1 transgenic plants. This suggests that DWF1 has enzyme activity not only for a sterol C-24 reductase, but also for a BR C-24 reductase that catalyses C-24 reduction of 6-deoxoDS to 6-deoxoCS and of DS to CS in Arabidopsis. Overexpression of DWF1 in a BR-deficient mutant (det2 35S:DWF1) clearly rescued abnormalities found in det2, indicating that DWF1 functions in biosynthesis of active BRs in Arabidopsis. Expression of DWF1 is down-regulated by application of CS and BL and in a BR-dominant mutant, bes1-D. E-boxes in the putative promoter region of DWF1 directly bind to a BR transcription factor, BES1, implying that DWF1 expression is feedback-regulated by BR signaling via BES1. Overall, biosynthesis of 24-methylene BR is an alternative route for generating CS, which is mediated and regulated by DWF1 in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Brassinosteroids/biosynthesis , Gene Expression Regulation, Plant , Oxidoreductases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Biosynthetic Pathways , Brassinosteroids/chemistry , Oxidoreductases/genetics , Steroids, Heterocyclic/chemistry
15.
Plant Cell Environ ; 41(5): 1022-1037, 2018 05.
Article in English | MEDLINE | ID: mdl-28349595

ABSTRACT

Seed germination is a complex process regulated by intrinsic hormonal cues such as abscisic acid (ABA) and gibberellin (GA), and environmental signals including temperature. Using pharmacological, molecular and metabolomics approaches, we show that supraoptimal temperature delays wheat seed germination through maintaining elevated embryonic ABA level via increased expression of ABA biosynthetic genes (TaNCED1 and TaNCED2), increasing embryo ABA sensitivity through upregulation of genes regulating ABA signalling positively (TaPYL5, TaSnRK2, ABI3 and ABI5) and decreasing embryo GA sensitivity via induction of TaRHT1 that regulates GA signalling negatively. Endospermic ABA and GA appeared to have minimal roles in regulating germination at supraoptimal temperature. Germination inhibition by suboptimal temperature is associated with elevated ABA level in the embryo and endosperm tissues, mediated by induction of TaNCEDs and decreased expression of endospermic ABA catabolic genes (TaCYP707As), and increased ABA sensitivity in both tissues via upregulation of TaPYL5, TaSnRK2, ABI3 and ABI5 in the embryo and TaSnRK2 and ABI5 in the endosperm. Furthermore, suboptimal temperature suppresses GA synthesis in both tissues and GA sensitivity in the embryo via repressing GA biosynthetic genes (TaGA20ox and TaGA3ox2) and inducing TaRHT1, respectively. These results highlight that spatiotemporal modulation of ABA and GA metabolism and signalling in wheat seeds underlies germination response to temperature.


Subject(s)
Abscisic Acid/metabolism , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Signal Transduction , Triticum/physiology , Endosperm/genetics , Endosperm/physiology , Germination , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/physiology , Spatio-Temporal Analysis , Temperature , Triticum/genetics
16.
Mar Pollut Bull ; 121(1-2): 425-434, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28641885

ABSTRACT

The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses.


Subject(s)
Chlorophyll/analysis , Remote Sensing Technology , Water Quality , Environmental Monitoring , Water , Water Pollutants/analysis
17.
Appl Opt ; 55(9): 2312-23, 2016 03 20.
Article in English | MEDLINE | ID: mdl-27140568

ABSTRACT

We analyze the sensor out-of-band (OOB) effects for satellite ocean color sensors of the sea-viewing wild field-of-view sensor (SeaWiFS), the moderate resolution imaging spectroradiometer (MODIS), and the visible infrared imaging radiometer suite (VIIRS) for phytoplankton-dominated open oceans and turbid coastal and inland waters, following the approach of Wang et al. [Appl. Opt.40, 343 (2001)APOPAI0003-693510.1364/AO.40.000343]. The applicability of the open ocean water reflectance model of Morel and Maritorena [J. Geophys. Res.106, 7163 (2001)JGREA20148-022710.1029/2000JC000319] (MM01) for the sensor OOB effects is analyzed for oligotrophic waters in Hawaii. The MM01 model predicted OOB contributions for oligotrophic waters are consistent with the result from in situ measurements. The OOB effects cause an apparent shift in sensor band center wavelengths in radiometric response, which depends on the sensor spectral response function and the target radiance being measured. Effective band center wavelength is introduced and calculated for three satellite sensors and for various water types. Using the effective band center wavelengths, satellite and in situ measured water optical property data can be more meaningfully and accurately compared. It is found that, for oligotrophic waters, the OOB effect is significant for the SeaWiFS 555 nm band (and somewhat 510 nm band), MODIS 412 nm band, and VIIRS 551 nm band. VIIRS and SeaWiFS have similar sensor OOB performance. For coastal and inland waters, however, the OOB effect is generally not significant for all three sensors, even though some small OOB effects do exist. This study highlights the importance of understanding the sensor OOB effect and the necessity of a complete prelaunch sensor characterization on the quality of ocean color products. Furthermore, it shows that hyperspectral in situ optics measurements are preferred for the purpose of accurately validating satellite-measured normalized water-leaving radiance spectra data.

18.
Planta ; 244(2): 429-47, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27091738

ABSTRACT

MAIN CONCLUSION: The three homeologues of wheat NCED2 were identified; the wheat NCED2A and CYP707A1B affect seed ABA level and dormancy but not leaf ABA level and transpirational water loss in Arabidopsis. Biosynthesis and catabolism of abscisic acid (ABA) in plants are primarily regulated by 9-cis-epoxycarotenoid dioxygenases (NCEDs) and ABA 8'-hydroxylase (ABA8'OH), respectively. The present study identified the complete coding sequences of a second NCED gene, designated as TaNCED2, and its homeologues (TaNCED2A, TaNCED2B and TaNCED2D) in hexaploid wheat, and characterized its functionality in seed dormancy and leaf dehydration tolerance using the TaNCED2A homeologue. The study also investigated the role of the B genome copy of the cytochrome P450 monooxygenase 707A1 (CYP707A1) gene of hexaploid wheat (TaCYP707A1B), which encodes ABA8'OH, in regulating the two traits as this has not been studied before. Ectopic expression of TaNCED2A and TaCYP707A1B in Arabidopsis resulted in altered seed ABA level and dormancy with no effect on leaf ABA content and transpirational water loss. To gain insights into the physiological roles of TaNCED2 and TaCYP707A1 in wheat, the study examined their spatiotemporal expression patterns and determined the genomic contributions of transcripts to their total expression.


Subject(s)
Abscisic Acid/metabolism , Genes, Plant , Triticum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Cloning, Molecular , Germination/genetics , Phylogeny , Plant Dormancy/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Transpiration/genetics , Plants, Genetically Modified/metabolism , Sequence Analysis, Protein , Triticum/genetics , Water/metabolism
19.
BMC Plant Biol ; 16: 28, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26811086

ABSTRACT

BACKGROUND: Lignin is an important structural component of plant cell wall that confers mechanical strength and tolerance against biotic and abiotic stressors; however it affects the use of biomass such as wheat straw for some industrial applications such as biofuel production. Genetic alteration of lignin quantity and quality has been considered as a viable option to overcome this problem. However, the molecular mechanisms underlying lignin formation in wheat biomass has not been studied. Combining molecular and biochemical approaches, the present study investigated the transcriptional regulation of lignin biosynthesis in two wheat cultivars with varying lodging characteristics and also in response to waterlogging. It also examined the association of lignin level in tissues with that of plant hormones implicated in the control of lignin biosynthesis. RESULTS: Analysis of lignin biosynthesis in the two wheat cultivars revealed a close association of lodging resistance with internode lignin content and expression of 4-coumarate:CoA ligase1 (4CL1), p-coumarate 3-hydroxylase1 (C3H1), cinnamoyl-CoA reductase2 (CCR2), ferulate 5-hydroxylase2 (F5H2) and caffeic acid O-methyltransferase2 (COMT2), which are among the genes highly expressed in wheat tissues, implying the importance of these genes in mediating lignin deposition in wheat stem. Waterlogging of wheat plants reduced internode lignin content, and this effect is accompanied by transcriptional repression of three of the genes characterized as highly expressed in wheat internode including phenylalanine ammonia-lyase6 (PAL6), CCR2 and F5H2, and decreased activity of PAL. Expression of the other genes was, however, induced by waterlogging, suggesting their role in the synthesis of other phenylpropanoid-derived molecules with roles in stress responses. Moreover, difference in internode lignin content between cultivars or change in its level due to waterlogging is associated with the level of cytokinin. CONCLUSION: Lodging resistance, tolerance against biotic and abiotic stresses and feedstock quality of wheat biomass are closely associated with its lignin content. Therefore, the findings of this study provide important insights into the molecular mechanisms underlying lignin formation in wheat, an important step towards the development of molecular tools that can facilitate the breeding of wheat cultivars for optimized lignin content and enhanced feedstock quality without affecting other lignin-related agronomic benefits.


Subject(s)
Lignin/biosynthesis , Plant Growth Regulators/physiology , Triticum/metabolism , DNA, Plant , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , Plant Stems/metabolism , RNA, Plant , Species Specificity , Transcription, Genetic , Triticum/classification , Triticum/enzymology , Triticum/genetics , Water
20.
Phytochemistry ; 122: 34-44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26608667

ABSTRACT

Homeostasis of brassinosteroids (BRs) maintained by the balance between their biosynthesis and inactivation is important to coordinate the diverse physiological and developmental responses of plants. Although BR signaling regulates the endogenous levels of BRs via negative feedback regulation, it remains largely unknown how the biosynthesis and inactivation of BR are triggered. BAS1 encodes CYP734A1, which inactivates the biologically active BRs via C-26 hydroxylation and is down-regulated by a BR-responsive transcription factor, BZR1. Here it is demonstrated that the expression of the BAS1 gene is regulated by auxin response factors (ARFs) in Arabidopsis thaliana. Two successive E-box motifs on the BAS1 promoter function as BZR1 binding sites and are essential for BR-regulated BAS1 expression. The expression of BAS1 is increased in the arf7 and arf7arf19 mutants. The endogenous level of bioactive BR, castasterone, is greatly decreased in those mutants. ARF7 can bind to the E-box motifs of the BAS1 promoter where BZR1 binds, suggesting that ARF7 and BZR1 mutually compete for the same cis-element of the BAS1 promoter. Additionally, ARF7 directly interacts with BZR1, which inhibits their DNA binding activities and regulation of BAS1 expression. In conclusion, auxin signaling via ARF7 directly modulates the expression of BAS1 by competition with BZR1, thereby increasing the level of castasterone and promoting growth and development in A. thaliana.


Subject(s)
Arabidopsis Proteins/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cholestanols/analysis , Peroxiredoxins/drug effects , Transcription Factors/metabolism , Arabidopsis/genetics , Brassinosteroids/metabolism , Homeostasis , Indoleacetic Acids/metabolism , Promoter Regions, Genetic , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...