Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Structure ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38908377

ABSTRACT

Docking domains (DDs) located at the C- and N-termini of polypeptides play a crucial role in directing the assembly of polyketide synthases (PKSs), which are multienzyme complexes. Here, we determined the crystal structure of a complex comprising the C-terminal DD (CDDMlnB) and N-terminal DD (NDDMlnC) of macrolactin trans-acyltransferase (AT) PKS that were fused to a functional enzyme, AmpC EC2 ß-lactamase. Interface analyses of the CDDMlnB/NDDMlnC complex revealed the molecular intricacies in the core section underpinning the precise DD assembly. Additionally, circular dichroism and steady-state kinetics demonstrated that the formation of the CDDMlnB/NDDMlnC complex had no influence on the structural and functional fidelity of the fusion partner, AmpC EC2. This inspired us to apply the CDDMlnB/NDDMlnC assembly to metabolon engineering. Indeed, DD assembly induced the formation of a complex between 4-coumarate-CoA ligase and chalcone synthase both involved in flavonoid biosynthesis, leading to a remarkable increase in naringenin production in vitro.

2.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37650645

ABSTRACT

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

3.
Anal Chim Acta ; 1197: 339522, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35168735

ABSTRACT

Allergy-causing inflammatory diseases have attracted significant attention because they have emerged as global health problems linked to urbanization. Interleukin-33 (IL-33) plays an important role in producing inflammatory cytokines, and it has been suggested as a target for the diagnosis and treatment of allergy-causing inflammatory diseases. In this work, specific peptides that bind to IL-33 were identified by a phage display technique and their molecular interactions were described. The peptide-displaying phages were selected on the basis of relative binding affinity by using enzyme-linked immunosorbent assay (ELISA) and square wave voltammetry (SWV). The selected IL-33 specific peptide was identified as FGLEPRANLHFT. To investigate the molecular interactions between IL-33 and the affinity peptide, the peptide was separated from the phage particles, chemically synthesized and characterized by SWV, isothermal titration calorimetry (ITC), and microscale thermophoresis (MST). The binding constant (Kd) value with SWV, MST, and ITC was found to be 1.68 ± 0.37 µM, 5.98 ± 1.30 µM, and 2.68 ± 1.37 µM, respectively. Two-dimensional (2D) NMR spectral analysis was performed to elucidate the primary peptide binding site of IL-33, which was near the ST2-D3 and IL1RAcP-D3 binding interfaces. Based on these observations using two different approaches, we conclude that this approach could be applied not only for the design of new peptides or peptide biomimetics for drug development, but also for the creation of unique molecular recognition elements useful for allergy diagnosis.


Subject(s)
Bacteriophages , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Interleukin-33 , Peptide Library , Peptides , Protein Binding
4.
Chem Asian J ; 16(22): 3702-3712, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34553505

ABSTRACT

Interleukin-33 (IL-33) is an epithelial-derived cytokine that plays an important role in immune-mediated diseases such as asthma, atopic dermatitis, and rheumatoid arthritis. Although IL-33 is considered a potential target for the treatment of allergy-related diseases, no small molecule that inhibits IL-33 has been reported. Based on the structure-activity relationship and in vitro 2D NMR studies employing 15 N-labeled IL-33, we identified that the oxazolo[4,5-c]-quinolinone analog 7 c binds to the interface region of IL-33 and IL-33 receptor (ST2), an orphan receptor of the IL-1 receptor family. Compound 7 c effectively inhibited the production of IL-6 in human mast cells in a dose-dependent manner. Compound 7 c is the first low molecular weight IL-33 inhibitor and may be used as a prototype molecule for structural optimization and investigation of the IL-33/ST2 signaling pathway.


Subject(s)
Drug Design , Interleukin-33/antagonists & inhibitors , Quinolones/pharmacology , Dose-Response Relationship, Drug , Humans , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Mast Cells/drug effects , Mast Cells/metabolism , Molecular Structure , Quinolones/chemical synthesis , Quinolones/chemistry
6.
Nat Chem Biol ; 16(1): 31-41, 2020 01.
Article in English | MEDLINE | ID: mdl-31792442

ABSTRACT

A tumorigenic factor, AIMP2 lacking exon 2 (AIMP2-DX2), is often upregulated in many cancers. However, how its cellular level is determined is not understood. Here, we report heat-shock protein HSP70 as a critical determinant for the level of AIMP2-DX2. Interaction of the two factors was identified by interactome analysis and structurally determined by X-ray crystallography and NMR analyses. HSP70 recognizes the amino (N)-terminal flexible region, as well as the glutathione S-transferase domain of AIMP2-DX2, via its substrate-binding domain, thus blocking the Siah1-dependent ubiquitination of AIMP2-DX2. AIMP2-DX2-induced cell transformation and cancer progression in vivo was further augmented by HSP70. A positive correlation between HSP70 and AIMP2-DX2 levels was shown in various lung cancer cell lines and patient tissues. Chemical intervention in the AIMP2-DX2-HSP70 interaction suppressed cancer cell growth in vitro and in vivo. Thus, this work demonstrates the importance of the interaction between AIMP2-DX2 and HSP70 on tumor progression and its therapeutic potential against cancer.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Lung Neoplasms/metabolism , Nuclear Proteins/metabolism , Alternative Splicing , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Crystallography, X-Ray , Disease Progression , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , Protein Binding , Protein Interaction Mapping , Protein Multimerization , Surface Plasmon Resonance , Ubiquitin/chemistry
7.
Sci Rep ; 9(1): 8762, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217492

ABSTRACT

Thymic stromal lymphopoietin (TSLP) plays an important role in the differentiation and proliferation of Th2 cells, resulting in eosinophilic inflammation and numerous allergic diseases. Baicalein (1), a major component of Scutellaria baicalensis, was found to be the first small molecule to block TSLP signaling pathways. It inhibited effectively eosinophil infiltration in house dust mite-induced and ovalbumin-challenged mouse models. Structure-activity relationship studies identified compound 11a, a biphenyl flavanone analog, as a novel human TSLP inhibitor for the discovery and development of new anti-allergic drugs.


Subject(s)
Anti-Allergic Agents , Asthma , Cytokines , Flavanones , Animals , Anti-Allergic Agents/chemical synthesis , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/pharmacology , Asthma/chemically induced , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Cell Line , Cytokines/antagonists & inhibitors , Cytokines/chemistry , Flavanones/chemical synthesis , Flavanones/chemistry , Flavanones/pharmacology , Humans , Mice , Pyroglyphidae/immunology
8.
Science ; 349(6245): 312-6, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26113637

ABSTRACT

Circadian clocks generate slow and ordered cellular dynamics but consist of fast-moving bio-macromolecules; consequently, the origins of the overall slowness remain unclear. We identified the adenosine triphosphate (ATP) catalytic region [adenosine triphosphatase (ATPase)] in the amino-terminal half of the clock protein KaiC as the minimal pacemaker that controls the in vivo frequency of the cyanobacterial clock. Crystal structures of the ATPase revealed that the slowness of this ATPase arises from sequestration of a lytic water molecule in an unfavorable position and coupling of ATP hydrolysis to a peptide isomerization with high activation energy. The slow ATPase is coupled with another ATPase catalyzing autodephosphorylation in the carboxyl-terminal half of KaiC, yielding the circadian response frequency of intermolecular interactions with other clock-related proteins that influences the transcription and translation cycle.


Subject(s)
Adenosine Triphosphatases/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Circadian Rhythm , Synechococcus/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/chemistry , Bacterial Proteins/genetics , Catalysis , Circadian Rhythm Signaling Peptides and Proteins/genetics , Crystallography, X-Ray , Hydrolysis , Synechococcus/enzymology
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 1050-60, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24699649

ABSTRACT

Snail contributes to the epithelial-mesenchymal transition by suppressing E-cadherin in transcription processes. The Snail C2H2-type zinc-finger (ZF) domain functions both as a nuclear localization signal which binds to importin ß directly and as a DNA-binding domain. Here, a 2.5 Šresolution structure of four ZF domains of Snail1 complexed with importin ß is presented. The X-ray structure reveals that the four ZFs of Snail1 are required for tight binding to importin ß in the nuclear import of Snail1. The shape of the ZFs in the X-ray structure is reminiscent of a round snail, where ZF1 represents the head, ZF2-ZF4 the shell, showing a novel interaction mode, and the five C-terminal residues the tail. Although there are many kinds of C2H2-type ZFs which have the same fold as Snail, nuclear import by direct recognition of importin ß is observed in a limited number of C2H2-type ZF proteins such as Snail, Wt1, KLF1 and KLF8, which have the common feature of terminating in ZF domains with a short tail of amino acids.


Subject(s)
Transcription Factors/chemistry , Zinc Fingers , beta Karyopherins/chemistry , Active Transport, Cell Nucleus , Cell Line , Crystallography, X-Ray , Humans , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Analysis, Protein , Snail Family Transcription Factors , Transcription Factors/metabolism , beta Karyopherins/metabolism
10.
Article in English | MEDLINE | ID: mdl-23989161

ABSTRACT

Snail is a C2H2-type zinc finger transcriptional repressor that induces epithelial-mesenchymal transition by repression of E-cadherin expression levels during embryonic development and tumour progression. Snail is imported into the nucleus by importin ß through direct binding with its four zinc finger domain. The complex between importin ß and Snail four zinc finger domain was crystallized in order to understand the nuclear transport mechanism of Snail. The constituents of the complex were separately expressed and were then co-purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 228.2, b = 77.5, c = 72.0 Å, ß = 100.9° and diffracted to 2.5 Šresolution.


Subject(s)
Transcription Factors/chemistry , beta Karyopherins/chemistry , Active Transport, Cell Nucleus , Binding Sites , Cell Nucleus/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Gene Expression , Humans , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/isolation & purification , beta Karyopherins/genetics , beta Karyopherins/isolation & purification
11.
Proc Natl Acad Sci U S A ; 105(15): 5739-44, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18391214

ABSTRACT

The mitochondrial outer membrane-anchored monoamine oxidase (MAO) is a biochemically important flavoenzyme that catalyzes the deamination of biogenic and xenobiotic amines. Its two subtypes, MAOA and MAOB, are linked to several psychiatric disorders and therefore are interesting targets for drug design. To understand the relationship between structure and function of this enzyme, we extended our previous low-resolution rat MAOA structure to the high-resolution wild-type and G110A mutant human MAOA structures at 2.2 and 2.17 A, respectively. The high-resolution MAOA structures are similar to those of rat MAOA and human MAOB, but different from the known structure of human MAOA [De Colibus L, et al. (2005) Proc Natl Acad Sci USA 102:12684-12689], specifically regarding residues 108-118 and 210-216, which surround the substrate/inhibitor cavity. The results confirm that the inhibitor selectivity of MAOA and MAOB is caused by the structural differences arising from Ile-335 in MAOA vs. Tyr-326 in MAOB. The structures exhibit a C-terminal transmembrane helix with clear electron density, as is also seen in rat MAOA. Mutations on one residue of loop 108-118, G110, which is far from the active center but close to the membrane surface, cause the solubilized enzyme to undergo a dramatic drop in activity, but have less effect when the enzyme is anchored in the membrane. These results suggest that the flexibility of loop 108-118, facilitated by anchoring the enzyme into the membrane, is essential for controlling substrate access to the active site. We report on the observation of the structure-function relationship between a transmembrane helical anchor and an extra-membrane domain.


Subject(s)
Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Point Mutation , Protein Binding , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...