Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826216

ABSTRACT

Macroautophagy is thought to have a critical role in shaping and refining cellular proteostasis in eukaryotic cells recovering from DNA damage. Here, we report a mechanism by which autophagy is suppressed in cells exposed to bacterial toxin-, chemical-, or radiation-mediated sources of genotoxicity. Autophagy suppression is directly linked to cellular responses to DNA damage, and specifically the stabilization of the tumor suppressor p53, which is both required and sufficient for regulating the ubiquitination and proteasome-dependent reduction in cellular pools of microtubule-associated protein 1 light chain 3 (LC3A/B), a key precursor of autophagosome biogenesis and maturation, in both epithelial cells and an ex vivo organoid model. Our data indicate that suppression of autophagy, through a newly identified p53-proteasome-LC3 axis, is a conserved cellular response to multiple sources of genotoxicity. Such a mechanism could potentially be important for realigning proteostasis in cells undergoing DNA damage repair.

2.
J Biol Chem ; 296: 100239, 2021.
Article in English | MEDLINE | ID: mdl-33372035

ABSTRACT

Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.


Subject(s)
Inflammation/genetics , Lung Injury/genetics , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Acute Lung Injury/genetics , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Animals , Cytoskeleton/genetics , Endothelial Cells , Endothelium, Vascular/metabolism , Endothelium, Vascular/microbiology , Endothelium, Vascular/pathology , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Intercellular Junctions/genetics , Interleukin-6/genetics , Lung Injury/metabolism , Lung Injury/microbiology , Lung Injury/pathology , Mice , Mice, Knockout , Permeability , Staphylococcus aureus/pathogenicity
3.
FASEB J ; 33(3): 3887-3900, 2019 03.
Article in English | MEDLINE | ID: mdl-30521374

ABSTRACT

As mechanisms controlling redox homeostasis become impaired with aging, exaggerated oxidant stress may cause disproportional oxidation of cell membranes and circulating phospholipids (PLs), leading to the formation of truncated oxidized PL products (Tr-OxPLs), which exhibit deleterious effects. This study investigated the role of elevated Tr-OxPLs as a factor exacerbating inflammation and lung barrier dysfunction in an animal model of aging. Mass spectrometry analysis of Tr-OxPL species in young (2-4 mo) and aging (18-24 mo) mice revealed elevated basal levels of several products [1-palmitoyl-2-(5-oxovaleroyl)- sn-glycero-phosphocholine (POVPC), 1-palmitoyl-2-glutaroyl- sn-glycero-phosphocholine, lysophosphocholine, 1-palmitoyl-2-(9-oxo-nonanoyl)- sn-glycero-3-phosphocholine, 1-palmitoyl-2-azelaoyl- sn-glycero-3-phosphocholine, O-1-O-palmitoyl-2-O-(5,8-dioxo-8-hydroxy-6-octenoyl)-l-glycero-3-phosphocholine, and others] in the aged lungs. An intratracheal (i.t.) injection of bacterial LPS caused increased generation of Tr-OxPLs in the lungs but not in the liver, with higher levels detected in the aged group. In addition, OxPLs clearance from the lung tissue after LPS challenge was delayed in the aged group. The impact of Tr-OxPLs on endothelial cell (EC) barrier compromise under inflammatory conditions was further evaluated in the 2-hit cell culture model of acute lung injury (ALI). EC barrier dysfunction caused by cell treatment with a cytokine mixture (CM) was augmented by cotreatment with low-dose Tr-OxPLs, which did not significantly affect endothelial function when added alone. Deleterious effects of Tr-OxPLs on inflamed ECs stimulated with CM were associated with further weakening of cell junctions and more robust EC hyperpermeability. Aged mice injected intratracheally with TNF-α exhibited a more pronounced elevation of cell counts and protein content in bronchoalveolar lavage (BAL) samples. Interestingly, intravenous administration of low POVPC doses-which did not affect BAL parameters alone in young mice exposed to i.t. TNF-α challenge-augmented lung injury to the levels observed in aged mice stimulated with TNF-α alone. Inhibition of Tr-OxPL generation by ectopic expression of PL-specific platelet-activating factor acetylhydrolase 2 (PAFAH2) markedly reduced EC dysfunction induced by CM, whereas PAFAH2 pharmacologic inhibition augmented deleterious effects of cytokines on EC barrier function. Moreover, exacerbating effects of PAFAH2 inhibition on TNF-α-induced lung injury were observed in vivo. These results demonstrate an age-dependent increase in Tr-OxPL production under basal conditions and augmented Tr-OxPL generation upon inflammatory stimulation, suggesting a major role for elevated Tr-OxPLs in more severe ALI and delayed resolution in aging lungs.-Ke, Y., Karki, P., Kim, J., Son, S., Berdyshev, E., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs.


Subject(s)
Acute Lung Injury/metabolism , Aging/metabolism , Alveolar Epithelial Cells/metabolism , Lung/metabolism , Phospholipids/metabolism , Acute Lung Injury/pathology , Aging/pathology , Alveolar Epithelial Cells/pathology , Animals , Cells, Cultured , Female , Humans , Lung/cytology , Lung/growth & development , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction
4.
Am J Physiol Lung Cell Mol Physiol ; 313(4): L710-L721, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28663336

ABSTRACT

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


Subject(s)
Cell Membrane Permeability/drug effects , Endothelium, Vascular/drug effects , Inflammation/drug therapy , Lung Injury/drug therapy , Prostaglandins/pharmacology , Animals , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Hemostatics/adverse effects , Humans , Inflammation/chemically induced , Inflammation/pathology , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , Lung Injury/chemically induced , Lung Injury/pathology , Mice , Thrombin/adverse effects
5.
FASEB J ; 31(9): 4187-4202, 2017 09.
Article in English | MEDLINE | ID: mdl-28572443

ABSTRACT

Unlike other agonists that cause transient endothelial cell (EC) response, the products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) oxidation that contain cyclopenthenone groups, which recapitulate prostaglandin-like structure, cause sustained enhancement of the pulmonary EC barrier. The mechanisms that drive the sustained effects by oxidized PAPC (OxPAPC) remain unexplored. On the basis of the structural similarity of isoprostanoid moieties that are present in full-length oxygenated PAPC species, we used an inhibitory approach to perform the screening of prostanoid receptors as potential candidates that mediate OxPAPC effects. Results show that only prostaglandin E receptor-4 (EP4) was involved and mediated the sustained phase of the barrier-enhancing effects of OxPAPC that are associated with the activation of Rac GTPase and its cytoskeletal targets. EC incubation with OxPAPC also induced EP4 mRNA expression in pulmonary ECs and lung tissue. EP4 knockdown using gene-specific small interfering RNA did not affect the rapid phase of OxPAPC-induced EC barrier enhancement or the protective effects against thrombin-induced EC permeability, but abolished the advanced barrier enhancement phase and suppressed the protective effects of OxPAPC against more sustained EC barrier dysfunction and cell inflammatory response caused by TNF-α. Endothelial-specific knockout of the EP4 receptor in mice attenuated the protective effect of intravenous OxPAPC administration in the model of acute lung injury caused by intratracheal injection of LPS. Taken together, these results demonstrate a novel role for prostaglandin receptor EP4 in the mediation of barrier-enhancing and anti-inflammatory effects caused by oxidized phospholipids.-Oskolkova, O., Gawlak, G., Tian, Y., Ke, Y., Sarich, N., Son, S., Andreasson, K., Bochkov, V. N., Birukova, A. A., Birukov, K. G. Prostaglandin E receptor-4 receptor mediates endothelial barrier-enhancing and anti-inflammatory effects of oxidized phospholipids.


Subject(s)
Endothelial Cells/physiology , Phosphatidylcholines/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Adherens Junctions/physiology , Animals , Cytoskeleton , Electric Impedance , Humans , Inflammation/metabolism , Lung Injury , Mice , Mice, Knockout , Oxidation-Reduction , Phosphatidylcholines/chemistry , Phospholipids , Receptors, Prostaglandin E, EP4 Subtype/genetics , Thrombin , Tumor Necrosis Factor-alpha , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
6.
Cell Signal ; 29: 1-11, 2017 01.
Article in English | MEDLINE | ID: mdl-27667566

ABSTRACT

Rapid changes in microtubule (MT) polymerization dynamics affect regional activity of small GTPases RhoA and Rac1, which play a key role in the regulation of actin cytoskeleton and endothelial cell (EC) permeability. This study tested the role of End Binding Protein-1 (EB1) in the mechanisms of increased and decreased EC permeability caused by thrombin and hepatocyte growth factor (HGF) and mediated by RhoA and Rac1 GTPases, respectively. Stimulation of human lung EC with thrombin inhibited peripheral MT growth, which was monitored by morphological and biochemical evaluation of peripheral MT and the levels of stabilized MT. In contrast, stimulation of EC with HGF promoted peripheral MT growth and protrusion of EB1-positive MT plus ends to the EC peripheral submembrane area. EB1 knockdown by small interfering RNA did not affect partial MT depolymerization, activation of Rho signaling, and permeability response to thrombin, but suppressed the HGF-induced endothelial barrier enhancement. EB1 knockdown suppressed HGF-induced activation of Rac1 and Rac1 cytoskeletal effectors cortactin and PAK1, impaired HGF-induced assembly of cortical cytoskeleton regulatory complex (WAVE-p21Arc-IQGAP1), and blocked HGF-induced enhancement of peripheral actin cytoskeleton and VE-cadherin-positive adherens junctions. Altogether, these data demonstrate a role for EB1 in coordination of MT-dependent barrier enhancement response to HGF, but show no involvement of EB1 in acute increase of EC permeability caused by the barrier disruptive agonist. The results suggest that increased peripheral EB1 distribution is a critical component of the Rac1-mediated pathway and peripheral cytoskeletal remodeling essential for agonist-induced EC barrier enhancement.


Subject(s)
Cell Membrane Permeability , Endothelial Cells/cytology , Endothelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Actins/metabolism , Adherens Junctions/drug effects , Adherens Junctions/metabolism , Cell Line , Cell Membrane Permeability/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Knockdown Techniques , Hepatocyte Growth Factor/pharmacology , Humans , Microtubules/drug effects , Microtubules/metabolism , Signal Transduction/drug effects , Thrombin/pharmacology , Wiskott-Aldrich Syndrome Protein Family/metabolism , rac GTP-Binding Proteins/metabolism , ras GTPase-Activating Proteins/metabolism , rho GTP-Binding Proteins/metabolism
7.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1062-70, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26993523

ABSTRACT

Ventilator-induced lung injury (VILI) is associated with activated inflammatory signaling, such as cytokine production by endothelial and epithelial cells and macrophages, although the precise mechanisms of inflammatory activation induced by VILI-relevant cyclic stretch (CS) amplitude remain poorly understood. We show that exposure of human pulmonary endothelial cells (EC) to chronic CS at 18% linear distension (18% CS), but not at physiologically relevant 5% CS, induces "EC-activated phenotype," which is characterized by time-dependent increase in ICAM1 and VCAM1 expression. A preconditioning of 18% CS also increased in a time-dependent fashion the release of soluble ICAM1 (sICAM1) and IL-8. Investigation of potential signaling mechanisms of CS-induced EC inflammatory activation showed that 18% CS, but not 5% CS, induced time-dependent upregulation of VEGF receptor 2 (VEGFR2), as monitored by increased protein expression and VEGFR2 tyrosine phosphorylation. Both CS-induced VEGFR2 expression and tyrosine phosphorylation were abrogated by cotreatment with reactive oxygen species inhibitor, N-acetyl cysteine. Molecular inhibition of VEGFR2 expression by gene-specific siRNA or treatment with VEGFR2 pharmacological inhibitor SU-1498 attenuated CS-induced activation of ICAM1 and VCAM1 expression and sICAM1 release. Chronic EC preconditioning at 18% CS augmented EC inflammation and barrier-disruptive response induced by proinflammatory cytokine TNF-α. This effect of chronic 18% CS preconditioning was attenuated by siRNA-induced VEGFR2 knockdown. This study demonstrates for the first time a VEGFR2-dependent mechanism of EC inflammatory activation induced by pathological CS. We conclude that, despite the recognized role of VEGF as a prosurvival and angiogenic factor, excessive activation of VEGFR2 signaling by high-tidal-volume lung mechanical ventilation may contribute to ventilator-induced (biotrauma) lung inflammation and barrier dysfunction by augmenting cell response to VILI-associated inflammatory mediators.


Subject(s)
Endothelial Cells/physiology , Vascular Endothelial Growth Factor Receptor-2/metabolism , Ventilator-Induced Lung Injury/immunology , Cells, Cultured , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-8/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Ventilator-Induced Lung Injury/metabolism
8.
PLoS One ; 10(11): e0143977, 2015.
Article in English | MEDLINE | ID: mdl-26618479

ABSTRACT

Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.


Subject(s)
Bacterial Toxins/metabolism , Enteropathogenic Escherichia coli/physiology , Epithelial Cells/cytology , Haemophilus ducreyi/physiology , T-Lymphocytes/cytology , Animals , CHO Cells , Cell Cycle , Cell Survival , Cricetulus , Enteropathogenic Escherichia coli/metabolism , Haemophilus ducreyi/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Jurkat Cells , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...