Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 385: 129384, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37355142

ABSTRACT

This study aims to develop a new chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole (SMX) antibiotics in water. Biochar was prepared from orange peel (OB) and spent coffee grounds (SCB). To fabricate chitosan-biochar composites, chitosan and biochar were crosslinked with glutaraldehyde. Results showed that pH, adsorbent dosage, time, temperature, and initial concentrations have a significant impact on the SMX adsorption. The adsorption data was better described by Langmuir (with good regression) than Freundlich model. The highest adsorption capacity (Qmax) of SMX on OB, SCB, CTS-OB, and CTS-SCB were 3.49, 7.65, 7.24, and 14.73 mg/g, respectively. The Freundlich constant (KF) values for adsorption capacity were 1.66, 1.91, 2.57, and 5.57 (mg1-nLn/g), respectively, for OB, SCB, CTS-OB, and CTS-SCB. Ion exchange, π bonding, hydrogen bonding and pore filling, were proposed as dominant mechanisms of SMX removal process.


Subject(s)
Chitosan , Water Pollutants, Chemical , Anti-Bacterial Agents , Sulfamethoxazole , Water , Water Pollutants, Chemical/analysis , Charcoal , Adsorption , Kinetics
2.
J Nanosci Nanotechnol ; 18(8): 5591-5599, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29458614

ABSTRACT

In this work, a functional graphene oxide-iron oxide-silver (GO-Fe3O4-Ag) ternary nanocomposite was synthesized by using one-pot hydrothermal treatments of mixture solutions of silver nitrate (AgNO3), ferrous chloride tetrahydrate (FeCl2 4H2O), polyvinylpyrrolidone (PVP), graphene oxide (GO), and ammonium hydroxide solution (NH4OH). The systematic effects of synthesis conditions on the microstructure and formation of binary and ternary composite systems were studied. Importantly, high-crystalline GO-Fe3O4-Ag ternary nanomaterials with average sizes of Fe3O4 particles ~16 nm and of Ag particles ~20 nm were obtained at optimized conditions (125 °C, 2.5 mM of AgNO3 and 5 mL of NH4OH). Magnetic analysis indicated that the saturated magnetization value of Fe3O4-Ag binary composite sample (~73.1 emu/g) was improved as compared with pure Fe3O4 nanoparticles (~60.6 emu/g), while this of GO-Fe3O4-Ag ternary composite sample was about 57.3 emu/g. With exhibited advantages of low-cost, high purity and short synthesis time, the hydrothermal-synthesized GO-Fe3O4-Ag ternary nanocomposite can be a promising candidate for advanced environmental catalyst and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...