Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32253973

ABSTRACT

In this study, a pilot-scale down-flow hanging sponge (DHS) reactor was operated in the community plant of Bangkok for the treatment of domestic wastewater (COD 285 mg/L, BOD 105 mg/L) collected by separate sewer to evaluate the reactor's feasibility as a decentralized treatment system. The DHS reactor was operated for 600 days at ambient temperatures of 25-30 °C, both with constant flow conditions and with fluctuating flow conditions that simulated wastewater discharge patterns of the community. The results indicate that under constant flow at an HRT of 5 h, the volumetric loading rates of 0.36 kgBOD/m3-sponge/day and 0.16 kgN/m3-sponge/day were the optimum operational conditions of the DHS reactor in order to satisfy the effluent discharge standards. The DHS achieved removal rates of 89, 95, 91 and 90% for COD, BOD, TSS and NH4-N. Under the fluctuating flow condition, improvement of denitrification was confirmed at volumetric loading rates of 0.50 kgBOD/m3-sponge/day and 0.18 kgN/m3-sponge/day. The fluctuating flow of wastewater positively affects retained sludge activities in terms of homogenizing sludge concentration and stimulating oxygen uptake rates. These results suggest that the DHS reactor can be applied as a decentralized treatment system for domestic wastewater with fluctuating flow rates in tropical regions.


Subject(s)
Bioreactors , Wastewater/chemistry , Water Purification/methods , Biological Oxygen Demand Analysis , Denitrification , Pilot Projects , Sewage/microbiology , Thailand
2.
Chemosphere ; 233: 645-651, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195268

ABSTRACT

A laboratory-scale experiment is conducted to remove nitrogen from nitrogen-rich wastewater using a down-flow hanging sponge (DHS) reactor. Effluent from an anaerobic-aerobic system for treating synthetic natural rubber wastewater, which still contains high levels of ammonia, was used as nitrogen-rich wastewater. Experimental period was divided into four phases based whether a carbon source was fed to the DHS reactor. The highest nitrogen removal efficiency (59.5 ±â€¯5.4%) was achieved during phase 4, when a sodium acetate solution was fed into bottom section of the DHS reactor. In the DHS reactor, the nitrification occurred in the upper and middle sections. Then, after adding the sodium acetate solution, denitrification occurred. The final chemical oxygen demand, ammonia, and total inorganic nitrogen concentrations in the DHS reactor effluent were 37 ±â€¯24 mg/L, 34 ±â€¯5 mgN/L, and 42 ±â€¯8 mgN/L, respectively. These concentrations were sufficient to meet the effluent standards of the Vietnamese natural rubber industry, which are the strictest in South-East Asia. The dominant bacteria in the sludge retained by the reactor's sponge media were the nitrifying bacteria Nitrosovibrio (0.2%) and Nitrospira (0.2-0.3%), the denitrifying bacteria Hylemonella (1.0-13.7%), Pseudoxanthomonas (1.2-2.1%), and Amaricoccus (2.4-3.5%), and the anammox bacterium Candidatus Brocadia (0.1-0.2%). Significant amounts of the nitrogen-fixing bacterium Xanthobacter (11.2-14.8%) and the rubber-degrading bacterium Gordonia (11.0-28.6%) were also found in the DHS reactor. These bacteria were thus considered to be the key microbes for nitrogen removal in a DHS reactor fed with a carbon source for denitrification.


Subject(s)
Bioreactors , Nitrogen/analysis , Waste Disposal, Fluid/methods , Ammonia , Bacteria , Biological Oxygen Demand Analysis , Carbon , Denitrification , Nitrification , Rubber , Sewage/microbiology , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...