Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(32)2024 May 24.
Article in English | MEDLINE | ID: mdl-38710177

ABSTRACT

This study investigates the fabrication process of copper thin films via thermal evaporation, with precise control over film thickness achieved throughZ-position adjustment. Analysis of the as-fabricated copper films reveals a discernible relationship between grain size (〈D〉) andZ-position, characterized by a phenomenological equation〈D〉XRDn(Z)=〈D〉0n1+32rZ2+158rZ4, which is further supported by a growth exponent (n) of 0.41 obtained from the analysis. This value aligns well with findings in the literature concerning the growth of copper films, thus underlining the validity and reliability of our experimental outcomes. The resulting crystallites, ranging in size from 20 to 26 nm, exhibit a resistivity within the range of 3.3-4.6µΩ · cm. Upon thermal annealing at 200 °C, cuprite Cu2O thin films are produced, demonstrating crystallite sizes ranging from ∼9 to ∼24 nm with increasing film thickness. The observed monotonic reduction in Cu2O crystallites relative to film thickness is attributed to a recrystallization process, indicating amorphization when oxygen atoms are introduced, followed by the nucleation and growth of newly formed copper oxide phase. Changes in the optical bandgap of the Cu2O films, ranging from 2.31 to 2.07 eV, are attributed mainly to the quantum confinement effect, particularly important in Cu2O with size close than the Bohr exciton diameter (5 nm) of the Cu2O. Additionally, correlations between refractive index and extinction coefficient with film thickness are observed, notably a linear relationship between refractive index and charge carrier density. Electrical measurements confirm the presence of a p-type semiconductor with carrier concentrations of ∼1014cm-3, showing a slight decrease with film thickness. This phenomenon is likely attributed to escalating film roughness, which introduces supplementary scattering mechanisms for charge carriers, leading to a resistivity increase, especially as the roughness approaches or surpasses the mean free path of charge carriers (8.61 nm). Moreover,ab-initiocalculations on the Cu2O crystalline phase to investigate the impact of hydrostatic strain on its electronic and optical properties was conducted. We believe that our findings provide crucial insights that support the elucidation of the experimental results. Notably, thinner cuprite films exhibit heightened sensitivity to ethanol gas at room temperature, indicating potential for highly responsive gas sensors, particularly for ethanol breath testing, with significant implications for portable device applications.

2.
RSC Adv ; 13(41): 28482-28492, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37771926

ABSTRACT

Nowadays, the use of self-cleaning surfaces is increasing globally, especially after the COVID-2019 pandemic, and the use of nanoparticles has been shown as a plausible option for this purpose. In the present study, Cu-doped SnO2 nanocrystals were successfully synthesized (in the copper content range of 0-30 mol%) using the polymeric precursor method. The structural, morphological, vibrational, and antibacterial activity were carefully studied to unveil the effect of copper ions on the properties of the hosting matrix, aiming at maximizing the usage of Cu-doped SnO2 nanocrystals. The results show fabrication of nanoparticles near their respective exciton Bohr diameter (5.4 nm for SnO2), however, monophasic SnO2 was observed up to 15 mol%. Above this limit, a secondary CuO phase was observed, as shown by the assessed X-ray diffraction (XRD), Fourier transform infrared, and Raman spectroscopy data. Furthermore, the redshift of the primary A1g vibrational mode of SnO2 is successfully described using the phonon-confinement model, demonstrating a good relationship between the Raman correlation length (L) and the crystallite size (〈D〉), the latter determined from XRD. Regarding the antibacterial activity, assessed via the disc-diffusion testing method (DDTM) while challenging two bacterial species (S. aureus and E. coli), our results suggest a rapid diffusion of the nanoparticles out of the paper disc, with a synergistic effect credited to the Sn1-xCuxO2-CuO phases contributing to the inhibition of the bacteria growth. Moreover, the DDTM data scales with cell viability, the latter analyzed using the Hill equation, from which both lethal dose 50 (LD50) and benchmark dose (BMD) were extracted.

SELECTION OF CITATIONS
SEARCH DETAIL
...