Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 651(Pt 2): 1958-1968, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30321719

ABSTRACT

We present a case study of a long-term integrated monitoring of a flood event which affected part of the Strymonas dammed river basin, a transboundary river with source in Bulgaria, which flows then through Greece to the Aegean Sea. The event, which affected the floodplain downstream the Kerkini dam, started at the beginning of April 2015, due to heavy rain upstream of the monitored area, and lasted for several months, with some water pools still present at the beginning of September, due to the peculiar geomorphological conditions of the watershed. We collected a multi-temporal dataset consisting of a high-resolution, X-band COSMO-SkyMed, and several C-band Sentinel-1 SAR and optical Landsat-8 images of the area. The results allow following the event in time, sketching a multi-temporal map of the post-flood evolution, with relatively high temporal resolution. We then use hydrological modeling to mimic the dynamics of the flooded area against post event weather patterns and thus explain the observed flood extent evolution. We show how integrating remote sensing-derived maps of flooded areas, geomorphological analyses of the landscape and simplified hydrological modeling allows accurate inference about long-term dynamics of flooded areas, very important in the post event in anthropogenic highly modified areas, where recovery time after the flood event is considerable, and long term water persistence may lead to large consequences, carrying economic damages and medical emergencies.


Subject(s)
Environmental Monitoring , Floods , Remote Sensing Technology , Water Movements , Geology , Greece , Hydrology , Models, Theoretical , Rivers
2.
Sci Rep ; 6: 21740, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26907811

ABSTRACT

Learning the art of exploiting the interplay between different units at the atomic scale is a fundamental step in the realization of functional nano-architectures and interfaces. In this context, understanding and controlling the magnetic coupling between molecular centers and their environment is still a challenging task. Here we present a combined experimental-theoretical work on the prototypical case of the bis(phthalocyaninato)-lanthanide(III) (LnPc2) molecular nanomagnets magnetically coupled to a Ni substrate. By means of X-ray magnetic circular dichroism we show how the coupling strength can be tuned by changing the Ln ion. The microscopic parameters of the system are determined by ab-initio calculations and then used in a spin Hamiltonian approach to interpret the experimental data. By this combined approach we identify the features of the spin communication channel: the spin path is first realized by the mediation of the external (5d) electrons of the Ln ion, keeping the characteristic features of the inner 4 f orbitals unaffected, then through the organic ligand, acting as a bridge to the external world.

3.
Org Lett ; 12(21): 4880-3, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20873865

ABSTRACT

At the B3LYP/6-311++G(d,p) level, approach of a lithium atom to a face of the fulvene molecule leads to formation of a complex with binding energy 41 kcal/mol and significant ion-pair character. The fulvene moiety gains a delocalized aromatic cyclic π system, documented by the geometry-based aromaticity index HOMA, and a strong diatropic ring current, visualized by ipsocentric calculation of the π current-density, which leads to an "aromatic" NICS value of -11 ppm.


Subject(s)
Cyclopentanes/chemistry , Lithium/chemistry , Models, Molecular , Molecular Conformation
4.
J Chem Phys ; 129(7): 074101, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-19044754

ABSTRACT

The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O(3), CO, PN, and H(2)CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.

5.
J Phys Chem A ; 110(47): 12882-6, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17125304

ABSTRACT

Within the ipsocentric method for calculation of molecular magnetic response, projection of perturbed orbitals onto the virtual orbital space allows partition of induced current density into contributions from individual virtual excitations between occupied and unoccupied orbitals, enabling detailed assignment of the origin of currents in, e.g., benzene, cyclooctatetraene, borazine, coronene, and corannulene. Whereas delocalized currents in benzene and planar cyclooctatetraene are described by transitions within the valence space, localized currents in the borazine pi system involve excitations outside the valence space.

7.
Org Lett ; 7(16): 3457-60, 2005 Aug 04.
Article in English | MEDLINE | ID: mdl-16048316

ABSTRACT

Traces of magnetizability, traces of magnetic shielding at the hydrogen nuclei, and nucleus-independent chemical shift are not reliable aromaticity quantifiers for planar conjugated hydrocarbons. A measure of aromaticity is provided by the out-of-plane tensor components, whose magnitude is influenced by the pi-ring currents. The failure of nucleus-independent chemical shift in this regard was proved for the molecule shown in the abstract graphic, sustaining a diatropic pi-current. The validity of the ring-current model is reaffirmed. [structure: see text]

8.
Chem Commun (Camb) ; (22): 2386-7, 2001 Nov 21.
Article in English | MEDLINE | ID: mdl-12240088

ABSTRACT

Direct visualisation of induced current density in clamped benzenes 1-4 distinguishes between saturated clamping groups, for which the central benzene ring retains a conventional diamagnetic ring current, and strongly interacting, unsaturated clamps, for which the central ring supports only the localised circulations expected of a 1,3,5-cyclohexatriene with fully fixed double bonds.

9.
Article in English | MEDLINE | ID: mdl-11138139

ABSTRACT

A coupled Hartree-Fock procedure has been employed to estimate the parity-violating energy contribution due to electroweak interaction in the vicinity of the transition point of a chemical reaction path starting from achiral reagents and producing the chiral CHFClBr molecule. The calculations demonstrate that (i) the S enantiomer is a reaction product more stable than its mirror image by approximately 1x10(-17) hartree; (ii) in the transition state of the reaction, the chiral activated complex evolving toward the S-CHFClBr species is more stable, by approximately 2.3x10(-17) hartree, than the enantiomeric activated complex that would yield the R-CHFClBr species. These results suggest that kinetic effects at work during chemical syntheses of chiral molecules might be more significant than the different thermodynamical stability of the two mirror-image reaction products in determining the final configuration and to explain homochirality.

SELECTION OF CITATIONS
SEARCH DETAIL
...