Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Commun Signal ; 1(1): 5-15, 2007 Jun.
Article in English | MEDLINE | ID: mdl-18481206

ABSTRACT

The Transforming acidic coiled coil (TACC) proteins play a conserved role in normal development and tumorigenesis through interactions with multiple complexes involved in transcription, translation, and centrosomal dynamics. However, despite significant work on the function of TACC3 in the control of centrosomal mechanics, relatively little functional data is known about the family's founding member, TACC1. From a continued analysis of clones isolated by an unbiased yeast two-hybrid assay, we now show direct physical interactions between the TACC1 and the FHL (Four and a Half LIM-only) family of proteins. The authenticity of these interactions was validated both in vitro and in cellular systems. The FHLs exhibit diverse biological roles such as the regulation of the actin cytoskeleton and are promiscuous coregulators for several transcription factors. The interaction of the endogenous TACC-FHL proteins is primarily localized to the nucleus. However, similar to FHL2, overexpression of TACC1A in HEK293 is able to sequester serum activated ERK to the cytoplasm. This has the effect of reducing the serum induced transcriptional response of the c-fos and c-jun genes. The observation that TACCs can interact with the FHLs and alter their serum induced activities raises the possibility that the TACCs participate in crosstalk between cell signaling pathways important for cancer development and tumor progression. The transforming acidic coiled coil genes are known to be important prognostic indicators for breast, ovarian and lung cancer. In this manuscript, we identify a novel interaction between the TACCs and the FHL protein family. This interaction has an affect on ERK and may in part explain the variable associations and changes in subcellular locations of each family with specific subtypes of malignancy.

2.
Oncogene ; 23(14): 2559-63, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-14767476

ABSTRACT

Dysregulation of the human transforming acidic coiled coil (TACC) genes is thought to be important in the development of multiple myeloma, breast and gastric cancer. However, even though these proteins have been implicated in the control of cell growth and differentiation, the mechanism by which they function still remains to be clarified. Using the yeast two-hybrid assay, we have now identified the histone acetyltransferase (HAT) hGCN5L2 as a TACC2-binding protein. GST pull-down analysis subsequently confirmed that all human TACC family members can bind in vitro to hGCN5L2. The authenticity of these interactions was validated by coimmunoprecipitation assays within the human embryonic kidney cell line HEK293, which identified the TACC2s isoform as a component consistently bound to several different members of HAT family. This raises the possibility that aberrant expression of one or more TACC proteins may affect gene regulation through their interaction with components of chromatin remodeling complexes, thus contributing to tumorigenesis.


Subject(s)
Acetyltransferases/metabolism , Carrier Proteins/metabolism , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Isoforms/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Breast Neoplasms/genetics , Carrier Proteins/genetics , Cell Line , Cell Line, Tumor , Cytoplasm/metabolism , Drosophila Proteins/chemistry , Female , Glutathione Transferase/metabolism , Histone Acetyltransferases , Humans , Microtubule-Associated Proteins/chemistry , Precipitin Tests , Protein Isoforms/genetics , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Tumor Suppressor Proteins/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...